Properties

Label 3024.2.t.l.289.9
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.9
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.9

$q$-expansion

\(f(q)\) \(=\) \(q+2.52290 q^{5} +(1.07705 + 2.41660i) q^{7} +O(q^{10})\) \(q+2.52290 q^{5} +(1.07705 + 2.41660i) q^{7} -5.71296 q^{11} +(-2.45245 - 4.24777i) q^{13} +(-2.49483 - 4.32118i) q^{17} +(0.00383929 - 0.00664984i) q^{19} +0.667754 q^{23} +1.36505 q^{25} +(-3.85082 + 6.66981i) q^{29} +(-3.88302 + 6.72560i) q^{31} +(2.71729 + 6.09686i) q^{35} +(-3.19562 + 5.53498i) q^{37} +(-5.21159 - 9.02673i) q^{41} +(-4.42935 + 7.67185i) q^{43} +(-1.08052 - 1.87152i) q^{47} +(-4.67994 + 5.20559i) q^{49} +(3.69858 + 6.40613i) q^{53} -14.4133 q^{55} +(0.261797 - 0.453446i) q^{59} +(4.49541 + 7.78628i) q^{61} +(-6.18730 - 10.7167i) q^{65} +(-2.54791 + 4.41311i) q^{67} -5.68471 q^{71} +(-1.52062 - 2.63379i) q^{73} +(-6.15314 - 13.8060i) q^{77} +(3.08115 + 5.33671i) q^{79} +(-0.258726 + 0.448126i) q^{83} +(-6.29422 - 10.9019i) q^{85} +(-1.19093 + 2.06274i) q^{89} +(7.62377 - 10.5017i) q^{91} +(0.00968615 - 0.0167769i) q^{95} +(4.32994 - 7.49968i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.52290 1.12828 0.564139 0.825680i \(-0.309208\pi\)
0.564139 + 0.825680i \(0.309208\pi\)
\(6\) 0 0
\(7\) 1.07705 + 2.41660i 0.407086 + 0.913390i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.71296 −1.72252 −0.861262 0.508161i \(-0.830325\pi\)
−0.861262 + 0.508161i \(0.830325\pi\)
\(12\) 0 0
\(13\) −2.45245 4.24777i −0.680188 1.17812i −0.974923 0.222541i \(-0.928565\pi\)
0.294735 0.955579i \(-0.404769\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.49483 4.32118i −0.605086 1.04804i −0.992038 0.125939i \(-0.959806\pi\)
0.386952 0.922100i \(-0.373528\pi\)
\(18\) 0 0
\(19\) 0.00383929 0.00664984i 0.000880793 0.00152558i −0.865585 0.500763i \(-0.833053\pi\)
0.866465 + 0.499237i \(0.166386\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.667754 0.139236 0.0696181 0.997574i \(-0.477822\pi\)
0.0696181 + 0.997574i \(0.477822\pi\)
\(24\) 0 0
\(25\) 1.36505 0.273010
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.85082 + 6.66981i −0.715079 + 1.23855i 0.247851 + 0.968798i \(0.420276\pi\)
−0.962929 + 0.269754i \(0.913058\pi\)
\(30\) 0 0
\(31\) −3.88302 + 6.72560i −0.697412 + 1.20795i 0.271949 + 0.962312i \(0.412332\pi\)
−0.969361 + 0.245641i \(0.921002\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.71729 + 6.09686i 0.459306 + 1.03056i
\(36\) 0 0
\(37\) −3.19562 + 5.53498i −0.525357 + 0.909946i 0.474207 + 0.880414i \(0.342735\pi\)
−0.999564 + 0.0295319i \(0.990598\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.21159 9.02673i −0.813913 1.40974i −0.910106 0.414376i \(-0.864000\pi\)
0.0961931 0.995363i \(-0.469333\pi\)
\(42\) 0 0
\(43\) −4.42935 + 7.67185i −0.675469 + 1.16995i 0.300863 + 0.953668i \(0.402725\pi\)
−0.976332 + 0.216279i \(0.930608\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.08052 1.87152i −0.157610 0.272989i 0.776396 0.630245i \(-0.217046\pi\)
−0.934006 + 0.357256i \(0.883712\pi\)
\(48\) 0 0
\(49\) −4.67994 + 5.20559i −0.668562 + 0.743656i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.69858 + 6.40613i 0.508039 + 0.879950i 0.999957 + 0.00930815i \(0.00296292\pi\)
−0.491917 + 0.870642i \(0.663704\pi\)
\(54\) 0 0
\(55\) −14.4133 −1.94348
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.261797 0.453446i 0.0340831 0.0590336i −0.848481 0.529226i \(-0.822482\pi\)
0.882564 + 0.470193i \(0.155816\pi\)
\(60\) 0 0
\(61\) 4.49541 + 7.78628i 0.575578 + 0.996931i 0.995979 + 0.0895919i \(0.0285563\pi\)
−0.420400 + 0.907339i \(0.638110\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.18730 10.7167i −0.767441 1.32925i
\(66\) 0 0
\(67\) −2.54791 + 4.41311i −0.311277 + 0.539147i −0.978639 0.205586i \(-0.934090\pi\)
0.667362 + 0.744733i \(0.267423\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.68471 −0.674651 −0.337325 0.941388i \(-0.609522\pi\)
−0.337325 + 0.941388i \(0.609522\pi\)
\(72\) 0 0
\(73\) −1.52062 2.63379i −0.177975 0.308262i 0.763212 0.646148i \(-0.223621\pi\)
−0.941187 + 0.337887i \(0.890288\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.15314 13.8060i −0.701215 1.57334i
\(78\) 0 0
\(79\) 3.08115 + 5.33671i 0.346657 + 0.600427i 0.985653 0.168783i \(-0.0539836\pi\)
−0.638997 + 0.769209i \(0.720650\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.258726 + 0.448126i −0.0283988 + 0.0491882i −0.879876 0.475204i \(-0.842374\pi\)
0.851477 + 0.524392i \(0.175708\pi\)
\(84\) 0 0
\(85\) −6.29422 10.9019i −0.682704 1.18248i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.19093 + 2.06274i −0.126238 + 0.218650i −0.922216 0.386675i \(-0.873624\pi\)
0.795978 + 0.605325i \(0.206957\pi\)
\(90\) 0 0
\(91\) 7.62377 10.5017i 0.799188 1.10087i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.00968615 0.0167769i 0.000993778 0.00172127i
\(96\) 0 0
\(97\) 4.32994 7.49968i 0.439639 0.761477i −0.558022 0.829826i \(-0.688440\pi\)
0.997662 + 0.0683485i \(0.0217730\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.33566 0.928933 0.464466 0.885591i \(-0.346246\pi\)
0.464466 + 0.885591i \(0.346246\pi\)
\(102\) 0 0
\(103\) −16.2185 −1.59806 −0.799029 0.601293i \(-0.794653\pi\)
−0.799029 + 0.601293i \(0.794653\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.50171 7.79718i 0.435196 0.753782i −0.562115 0.827059i \(-0.690012\pi\)
0.997312 + 0.0732767i \(0.0233456\pi\)
\(108\) 0 0
\(109\) 3.71563 + 6.43566i 0.355893 + 0.616424i 0.987270 0.159051i \(-0.0508435\pi\)
−0.631378 + 0.775476i \(0.717510\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.14642 12.3780i −0.672278 1.16442i −0.977256 0.212061i \(-0.931982\pi\)
0.304978 0.952359i \(-0.401351\pi\)
\(114\) 0 0
\(115\) 1.68468 0.157097
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.75551 10.6831i 0.710947 0.979321i
\(120\) 0 0
\(121\) 21.6380 1.96709
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.17064 −0.820247
\(126\) 0 0
\(127\) 1.96011 0.173932 0.0869660 0.996211i \(-0.472283\pi\)
0.0869660 + 0.996211i \(0.472283\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.98825 −0.348455 −0.174227 0.984705i \(-0.555743\pi\)
−0.174227 + 0.984705i \(0.555743\pi\)
\(132\) 0 0
\(133\) 0.0202051 + 0.00211583i 0.00175201 + 0.000183466i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.40843 0.632945 0.316473 0.948602i \(-0.397501\pi\)
0.316473 + 0.948602i \(0.397501\pi\)
\(138\) 0 0
\(139\) −6.92660 11.9972i −0.587507 1.01759i −0.994558 0.104186i \(-0.966776\pi\)
0.407051 0.913405i \(-0.366557\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.0108 + 24.2674i 1.17164 + 2.02934i
\(144\) 0 0
\(145\) −9.71524 + 16.8273i −0.806807 + 1.39743i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.1040 1.15545 0.577724 0.816232i \(-0.303941\pi\)
0.577724 + 0.816232i \(0.303941\pi\)
\(150\) 0 0
\(151\) 10.6005 0.862660 0.431330 0.902194i \(-0.358044\pi\)
0.431330 + 0.902194i \(0.358044\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.79650 + 16.9680i −0.786874 + 1.36291i
\(156\) 0 0
\(157\) 0.129779 0.224784i 0.0103575 0.0179397i −0.860800 0.508943i \(-0.830036\pi\)
0.871158 + 0.491003i \(0.163370\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.719203 + 1.61370i 0.0566811 + 0.127177i
\(162\) 0 0
\(163\) −6.31882 + 10.9445i −0.494928 + 0.857241i −0.999983 0.00584647i \(-0.998139\pi\)
0.505055 + 0.863087i \(0.331472\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.74959 9.95859i −0.444917 0.770619i 0.553129 0.833095i \(-0.313433\pi\)
−0.998046 + 0.0624765i \(0.980100\pi\)
\(168\) 0 0
\(169\) −5.52905 + 9.57659i −0.425311 + 0.736661i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.90471 13.6914i −0.600984 1.04094i −0.992672 0.120837i \(-0.961442\pi\)
0.391688 0.920098i \(-0.371891\pi\)
\(174\) 0 0
\(175\) 1.47022 + 3.29878i 0.111138 + 0.249364i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.49849 14.7198i −0.635207 1.10021i −0.986471 0.163934i \(-0.947582\pi\)
0.351265 0.936276i \(-0.385752\pi\)
\(180\) 0 0
\(181\) 6.35841 0.472617 0.236308 0.971678i \(-0.424062\pi\)
0.236308 + 0.971678i \(0.424062\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.06225 + 13.9642i −0.592749 + 1.02667i
\(186\) 0 0
\(187\) 14.2529 + 24.6867i 1.04227 + 1.80527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.07047 + 3.58616i 0.149814 + 0.259485i 0.931159 0.364614i \(-0.118799\pi\)
−0.781345 + 0.624100i \(0.785466\pi\)
\(192\) 0 0
\(193\) 3.84793 6.66481i 0.276980 0.479743i −0.693653 0.720310i \(-0.744000\pi\)
0.970633 + 0.240566i \(0.0773331\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.29508 −0.234765 −0.117383 0.993087i \(-0.537450\pi\)
−0.117383 + 0.993087i \(0.537450\pi\)
\(198\) 0 0
\(199\) −8.08840 14.0095i −0.573371 0.993108i −0.996216 0.0869063i \(-0.972302\pi\)
0.422845 0.906202i \(-0.361031\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −20.2658 2.12219i −1.42238 0.148948i
\(204\) 0 0
\(205\) −13.1483 22.7736i −0.918319 1.59058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.0219337 + 0.0379903i −0.00151719 + 0.00262784i
\(210\) 0 0
\(211\) 13.9633 + 24.1851i 0.961273 + 1.66497i 0.719312 + 0.694687i \(0.244457\pi\)
0.241961 + 0.970286i \(0.422209\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.1748 + 19.3554i −0.762116 + 1.32002i
\(216\) 0 0
\(217\) −20.4353 2.13994i −1.38724 0.145268i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.2369 + 21.1950i −0.823144 + 1.42573i
\(222\) 0 0
\(223\) 10.1652 17.6066i 0.680711 1.17903i −0.294054 0.955789i \(-0.595004\pi\)
0.974764 0.223237i \(-0.0716623\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.68939 −0.377618 −0.188809 0.982014i \(-0.560463\pi\)
−0.188809 + 0.982014i \(0.560463\pi\)
\(228\) 0 0
\(229\) 14.8542 0.981590 0.490795 0.871275i \(-0.336706\pi\)
0.490795 + 0.871275i \(0.336706\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.70652 + 11.6160i −0.439358 + 0.760991i −0.997640 0.0686603i \(-0.978128\pi\)
0.558282 + 0.829652i \(0.311461\pi\)
\(234\) 0 0
\(235\) −2.72605 4.72166i −0.177828 0.308007i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.33123 16.1622i −0.603587 1.04544i −0.992273 0.124073i \(-0.960404\pi\)
0.388686 0.921370i \(-0.372929\pi\)
\(240\) 0 0
\(241\) −21.4160 −1.37952 −0.689762 0.724036i \(-0.742285\pi\)
−0.689762 + 0.724036i \(0.742285\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.8070 + 13.1332i −0.754324 + 0.839050i
\(246\) 0 0
\(247\) −0.0376627 −0.00239642
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.462898 −0.0292179 −0.0146089 0.999893i \(-0.504650\pi\)
−0.0146089 + 0.999893i \(0.504650\pi\)
\(252\) 0 0
\(253\) −3.81485 −0.239838
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.802512 −0.0500593 −0.0250297 0.999687i \(-0.507968\pi\)
−0.0250297 + 0.999687i \(0.507968\pi\)
\(258\) 0 0
\(259\) −16.8177 1.76111i −1.04500 0.109430i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.201387 0.0124180 0.00620902 0.999981i \(-0.498024\pi\)
0.00620902 + 0.999981i \(0.498024\pi\)
\(264\) 0 0
\(265\) 9.33117 + 16.1621i 0.573209 + 0.992828i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.1773 + 19.3596i 0.681490 + 1.18038i 0.974526 + 0.224274i \(0.0720011\pi\)
−0.293036 + 0.956101i \(0.594666\pi\)
\(270\) 0 0
\(271\) 1.78925 3.09907i 0.108689 0.188255i −0.806550 0.591166i \(-0.798668\pi\)
0.915240 + 0.402910i \(0.132001\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.79847 −0.470266
\(276\) 0 0
\(277\) −10.1067 −0.607254 −0.303627 0.952791i \(-0.598198\pi\)
−0.303627 + 0.952791i \(0.598198\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.7114 + 22.0167i −0.758296 + 1.31341i 0.185422 + 0.982659i \(0.440635\pi\)
−0.943719 + 0.330749i \(0.892699\pi\)
\(282\) 0 0
\(283\) 1.93833 3.35728i 0.115222 0.199570i −0.802647 0.596455i \(-0.796575\pi\)
0.917868 + 0.396885i \(0.129909\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.2009 22.3166i 0.956308 1.31730i
\(288\) 0 0
\(289\) −3.94838 + 6.83879i −0.232257 + 0.402282i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.428834 0.742762i −0.0250527 0.0433926i 0.853227 0.521539i \(-0.174642\pi\)
−0.878280 + 0.478147i \(0.841309\pi\)
\(294\) 0 0
\(295\) 0.660489 1.14400i 0.0384551 0.0666063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.63763 2.83647i −0.0947068 0.164037i
\(300\) 0 0
\(301\) −23.3104 2.44102i −1.34359 0.140698i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.3415 + 19.6440i 0.649412 + 1.12481i
\(306\) 0 0
\(307\) 0.717950 0.0409756 0.0204878 0.999790i \(-0.493478\pi\)
0.0204878 + 0.999790i \(0.493478\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.72606 8.18578i 0.267990 0.464173i −0.700352 0.713797i \(-0.746974\pi\)
0.968343 + 0.249624i \(0.0803071\pi\)
\(312\) 0 0
\(313\) 11.6317 + 20.1467i 0.657464 + 1.13876i 0.981270 + 0.192638i \(0.0617043\pi\)
−0.323806 + 0.946124i \(0.604962\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.61771 + 11.4622i 0.371687 + 0.643781i 0.989825 0.142288i \(-0.0454460\pi\)
−0.618138 + 0.786070i \(0.712113\pi\)
\(318\) 0 0
\(319\) 21.9996 38.1044i 1.23174 2.13344i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.0383135 −0.00213182
\(324\) 0 0
\(325\) −3.34772 5.79841i −0.185698 0.321638i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.35894 4.62690i 0.185184 0.255089i
\(330\) 0 0
\(331\) −15.2165 26.3558i −0.836375 1.44864i −0.892906 0.450243i \(-0.851338\pi\)
0.0565316 0.998401i \(-0.481996\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.42813 + 11.1339i −0.351206 + 0.608307i
\(336\) 0 0
\(337\) −0.767420 1.32921i −0.0418041 0.0724067i 0.844366 0.535766i \(-0.179977\pi\)
−0.886170 + 0.463360i \(0.846644\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.1836 38.4231i 1.20131 2.08073i
\(342\) 0 0
\(343\) −17.6204 5.70287i −0.951410 0.307926i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.3036 24.7745i 0.767856 1.32997i −0.170867 0.985294i \(-0.554657\pi\)
0.938723 0.344672i \(-0.112010\pi\)
\(348\) 0 0
\(349\) −9.05123 + 15.6772i −0.484501 + 0.839181i −0.999841 0.0178047i \(-0.994332\pi\)
0.515340 + 0.856986i \(0.327666\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.5908 −0.776591 −0.388295 0.921535i \(-0.626936\pi\)
−0.388295 + 0.921535i \(0.626936\pi\)
\(354\) 0 0
\(355\) −14.3420 −0.761193
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.05831 + 1.83304i −0.0558554 + 0.0967443i −0.892601 0.450847i \(-0.851122\pi\)
0.836746 + 0.547592i \(0.184455\pi\)
\(360\) 0 0
\(361\) 9.49997 + 16.4544i 0.499998 + 0.866023i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.83638 6.64480i −0.200805 0.347805i
\(366\) 0 0
\(367\) −6.66209 −0.347758 −0.173879 0.984767i \(-0.555630\pi\)
−0.173879 + 0.984767i \(0.555630\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.4975 + 15.8377i −0.596922 + 0.822253i
\(372\) 0 0
\(373\) −12.4983 −0.647138 −0.323569 0.946205i \(-0.604883\pi\)
−0.323569 + 0.946205i \(0.604883\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 37.7758 1.94555
\(378\) 0 0
\(379\) 19.5504 1.00423 0.502117 0.864800i \(-0.332555\pi\)
0.502117 + 0.864800i \(0.332555\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.67480 −0.136676 −0.0683379 0.997662i \(-0.521770\pi\)
−0.0683379 + 0.997662i \(0.521770\pi\)
\(384\) 0 0
\(385\) −15.5238 34.8311i −0.791165 1.77516i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.96310 0.200937 0.100469 0.994940i \(-0.467966\pi\)
0.100469 + 0.994940i \(0.467966\pi\)
\(390\) 0 0
\(391\) −1.66593 2.88548i −0.0842499 0.145925i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.77345 + 13.4640i 0.391125 + 0.677448i
\(396\) 0 0
\(397\) 10.2978 17.8362i 0.516829 0.895175i −0.482980 0.875632i \(-0.660446\pi\)
0.999809 0.0195431i \(-0.00622114\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.83957 0.191739 0.0958696 0.995394i \(-0.469437\pi\)
0.0958696 + 0.995394i \(0.469437\pi\)
\(402\) 0 0
\(403\) 38.0917 1.89748
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.2565 31.6212i 0.904940 1.56740i
\(408\) 0 0
\(409\) 14.7113 25.4808i 0.727428 1.25994i −0.230538 0.973063i \(-0.574049\pi\)
0.957967 0.286880i \(-0.0926180\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.37777 + 0.144276i 0.0677954 + 0.00709938i
\(414\) 0 0
\(415\) −0.652741 + 1.13058i −0.0320418 + 0.0554980i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.40821 + 7.63525i 0.215355 + 0.373006i 0.953382 0.301765i \(-0.0975757\pi\)
−0.738027 + 0.674771i \(0.764242\pi\)
\(420\) 0 0
\(421\) −17.6437 + 30.5597i −0.859899 + 1.48939i 0.0121255 + 0.999926i \(0.496140\pi\)
−0.872024 + 0.489462i \(0.837193\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.40557 5.89861i −0.165194 0.286125i
\(426\) 0 0
\(427\) −13.9746 + 19.2498i −0.676277 + 0.931564i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8099 22.1873i −0.617030 1.06873i −0.990025 0.140893i \(-0.955003\pi\)
0.372995 0.927833i \(-0.378331\pi\)
\(432\) 0 0
\(433\) 16.8556 0.810030 0.405015 0.914310i \(-0.367266\pi\)
0.405015 + 0.914310i \(0.367266\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.00256370 0.00444045i 0.000122638 0.000212416i
\(438\) 0 0
\(439\) 15.4596 + 26.7768i 0.737846 + 1.27799i 0.953463 + 0.301509i \(0.0974902\pi\)
−0.215618 + 0.976478i \(0.569176\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.65544 + 8.06345i 0.221186 + 0.383106i 0.955169 0.296063i \(-0.0956737\pi\)
−0.733982 + 0.679169i \(0.762340\pi\)
\(444\) 0 0
\(445\) −3.00459 + 5.20410i −0.142431 + 0.246698i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −23.8055 −1.12345 −0.561724 0.827324i \(-0.689862\pi\)
−0.561724 + 0.827324i \(0.689862\pi\)
\(450\) 0 0
\(451\) 29.7736 + 51.5694i 1.40198 + 2.42831i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.2340 26.4947i 0.901706 1.24209i
\(456\) 0 0
\(457\) 6.90552 + 11.9607i 0.323027 + 0.559498i 0.981111 0.193446i \(-0.0619663\pi\)
−0.658084 + 0.752944i \(0.728633\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.00256407 0.00444110i 0.000119421 0.000206843i −0.865966 0.500103i \(-0.833295\pi\)
0.866085 + 0.499897i \(0.166629\pi\)
\(462\) 0 0
\(463\) −12.9682 22.4616i −0.602685 1.04388i −0.992413 0.122951i \(-0.960764\pi\)
0.389728 0.920930i \(-0.372569\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.0484 + 20.8684i −0.557532 + 0.965673i 0.440170 + 0.897914i \(0.354918\pi\)
−0.997702 + 0.0677588i \(0.978415\pi\)
\(468\) 0 0
\(469\) −13.4090 1.40416i −0.619168 0.0648379i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.3047 43.8290i 1.16351 2.01526i
\(474\) 0 0
\(475\) 0.00524081 0.00907735i 0.000240465 0.000416497i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.7823 0.675420 0.337710 0.941250i \(-0.390348\pi\)
0.337710 + 0.941250i \(0.390348\pi\)
\(480\) 0 0
\(481\) 31.3485 1.42937
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.9240 18.9210i 0.496035 0.859158i
\(486\) 0 0
\(487\) −9.38360 16.2529i −0.425211 0.736488i 0.571229 0.820791i \(-0.306467\pi\)
−0.996440 + 0.0843033i \(0.973134\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.2871 + 31.6741i 0.825284 + 1.42943i 0.901702 + 0.432358i \(0.142318\pi\)
−0.0764182 + 0.997076i \(0.524348\pi\)
\(492\) 0 0
\(493\) 38.4286 1.73074
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.12270 13.7377i −0.274641 0.616219i
\(498\) 0 0
\(499\) −4.63182 −0.207349 −0.103674 0.994611i \(-0.533060\pi\)
−0.103674 + 0.994611i \(0.533060\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.4143 0.731879 0.365940 0.930639i \(-0.380748\pi\)
0.365940 + 0.930639i \(0.380748\pi\)
\(504\) 0 0
\(505\) 23.5530 1.04809
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.4834 −0.464668 −0.232334 0.972636i \(-0.574636\pi\)
−0.232334 + 0.972636i \(0.574636\pi\)
\(510\) 0 0
\(511\) 4.72705 6.51145i 0.209112 0.288050i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −40.9178 −1.80305
\(516\) 0 0
\(517\) 6.17298 + 10.6919i 0.271487 + 0.470230i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.0087 + 19.0675i 0.482298 + 0.835364i 0.999793 0.0203215i \(-0.00646899\pi\)
−0.517496 + 0.855686i \(0.673136\pi\)
\(522\) 0 0
\(523\) 1.18541 2.05320i 0.0518346 0.0897801i −0.838944 0.544218i \(-0.816826\pi\)
0.890778 + 0.454438i \(0.150160\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 38.7500 1.68798
\(528\) 0 0
\(529\) −22.5541 −0.980613
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25.5623 + 44.2753i −1.10723 + 1.91777i
\(534\) 0 0
\(535\) 11.3574 19.6715i 0.491022 0.850475i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26.7363 29.7394i 1.15161 1.28097i
\(540\) 0 0
\(541\) 6.65209 11.5218i 0.285996 0.495359i −0.686854 0.726795i \(-0.741009\pi\)
0.972850 + 0.231436i \(0.0743423\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.37418 + 16.2366i 0.401546 + 0.695498i
\(546\) 0 0
\(547\) 2.43685 4.22074i 0.104192 0.180466i −0.809216 0.587512i \(-0.800108\pi\)
0.913408 + 0.407046i \(0.133441\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.0295688 + 0.0512146i 0.00125967 + 0.00218182i
\(552\) 0 0
\(553\) −9.57816 + 13.1938i −0.407305 + 0.561058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.09601 12.2907i −0.300668 0.520772i 0.675620 0.737250i \(-0.263876\pi\)
−0.976287 + 0.216479i \(0.930543\pi\)
\(558\) 0 0
\(559\) 43.4511 1.83778
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.51985 + 6.09657i −0.148344 + 0.256940i −0.930616 0.365998i \(-0.880728\pi\)
0.782271 + 0.622938i \(0.214061\pi\)
\(564\) 0 0
\(565\) −18.0297 31.2284i −0.758516 1.31379i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.15081 15.8497i −0.383622 0.664453i 0.607955 0.793972i \(-0.291990\pi\)
−0.991577 + 0.129519i \(0.958657\pi\)
\(570\) 0 0
\(571\) −15.2192 + 26.3604i −0.636902 + 1.10315i 0.349206 + 0.937046i \(0.386451\pi\)
−0.986109 + 0.166102i \(0.946882\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.911516 0.0380128
\(576\) 0 0
\(577\) 5.65385 + 9.79275i 0.235373 + 0.407678i 0.959381 0.282114i \(-0.0910356\pi\)
−0.724008 + 0.689791i \(0.757702\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.36160 0.142584i −0.0564888 0.00591538i
\(582\) 0 0
\(583\) −21.1299 36.5980i −0.875110 1.51573i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.89755 + 17.1431i −0.408516 + 0.707570i −0.994724 0.102591i \(-0.967287\pi\)
0.586208 + 0.810161i \(0.300620\pi\)
\(588\) 0 0
\(589\) 0.0298161 + 0.0516430i 0.00122855 + 0.00212791i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.69067 + 4.66038i −0.110493 + 0.191379i −0.915969 0.401249i \(-0.868576\pi\)
0.805476 + 0.592628i \(0.201910\pi\)
\(594\) 0 0
\(595\) 19.5664 26.9525i 0.802145 1.10495i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.12979 + 1.95686i −0.0461622 + 0.0799552i −0.888183 0.459489i \(-0.848032\pi\)
0.842021 + 0.539445i \(0.181366\pi\)
\(600\) 0 0
\(601\) 18.1873 31.5013i 0.741875 1.28496i −0.209766 0.977752i \(-0.567270\pi\)
0.951641 0.307213i \(-0.0993964\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 54.5905 2.21942
\(606\) 0 0
\(607\) −16.2161 −0.658190 −0.329095 0.944297i \(-0.606744\pi\)
−0.329095 + 0.944297i \(0.606744\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.29985 + 9.17961i −0.214409 + 0.371367i
\(612\) 0 0
\(613\) 21.6357 + 37.4741i 0.873857 + 1.51357i 0.857975 + 0.513691i \(0.171722\pi\)
0.0158822 + 0.999874i \(0.494944\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.92248 + 10.2580i 0.238430 + 0.412973i 0.960264 0.279093i \(-0.0900339\pi\)
−0.721834 + 0.692066i \(0.756701\pi\)
\(618\) 0 0
\(619\) −40.3288 −1.62095 −0.810475 0.585773i \(-0.800791\pi\)
−0.810475 + 0.585773i \(0.800791\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.26751 0.656320i −0.251103 0.0262949i
\(624\) 0 0
\(625\) −29.9619 −1.19848
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 31.8902 1.27154
\(630\) 0 0
\(631\) −13.9489 −0.555298 −0.277649 0.960683i \(-0.589555\pi\)
−0.277649 + 0.960683i \(0.589555\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.94518 0.196243
\(636\) 0 0
\(637\) 33.5895 + 7.11283i 1.33086 + 0.281821i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.5395 −0.692768 −0.346384 0.938093i \(-0.612591\pi\)
−0.346384 + 0.938093i \(0.612591\pi\)
\(642\) 0 0
\(643\) 13.5329 + 23.4397i 0.533686 + 0.924371i 0.999226 + 0.0393443i \(0.0125269\pi\)
−0.465540 + 0.885027i \(0.654140\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.3252 + 19.6159i 0.445240 + 0.771179i 0.998069 0.0621160i \(-0.0197849\pi\)
−0.552828 + 0.833295i \(0.686452\pi\)
\(648\) 0 0
\(649\) −1.49564 + 2.59052i −0.0587089 + 0.101687i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.784108 0.0306845 0.0153423 0.999882i \(-0.495116\pi\)
0.0153423 + 0.999882i \(0.495116\pi\)
\(654\) 0 0
\(655\) −10.0620 −0.393154
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.7219 + 28.9632i −0.651392 + 1.12824i 0.331393 + 0.943493i \(0.392481\pi\)
−0.982785 + 0.184752i \(0.940852\pi\)
\(660\) 0 0
\(661\) −1.53258 + 2.65450i −0.0596104 + 0.103248i −0.894291 0.447487i \(-0.852319\pi\)
0.834680 + 0.550735i \(0.185652\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0509756 + 0.00533805i 0.00197675 + 0.000207001i
\(666\) 0 0
\(667\) −2.57140 + 4.45379i −0.0995649 + 0.172451i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −25.6821 44.4827i −0.991447 1.71724i
\(672\) 0 0
\(673\) 14.4618 25.0487i 0.557463 0.965555i −0.440244 0.897878i \(-0.645108\pi\)
0.997707 0.0676766i \(-0.0215586\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.85818 10.1467i −0.225148 0.389968i 0.731216 0.682146i \(-0.238953\pi\)
−0.956364 + 0.292178i \(0.905620\pi\)
\(678\) 0 0
\(679\) 22.7873 + 2.38624i 0.874497 + 0.0915753i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.7190 + 35.8864i 0.792791 + 1.37315i 0.924232 + 0.381831i \(0.124706\pi\)
−0.131441 + 0.991324i \(0.541960\pi\)
\(684\) 0 0
\(685\) 18.6908 0.714138
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.1412 31.4215i 0.691125 1.19706i
\(690\) 0 0
\(691\) −3.45675 5.98727i −0.131501 0.227766i 0.792754 0.609541i \(-0.208646\pi\)
−0.924255 + 0.381775i \(0.875313\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.4752 30.2679i −0.662871 1.14813i
\(696\) 0 0
\(697\) −26.0041 + 45.0404i −0.984974 + 1.70603i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.1954 −1.48039 −0.740195 0.672392i \(-0.765267\pi\)
−0.740195 + 0.672392i \(0.765267\pi\)
\(702\) 0 0
\(703\) 0.0245378 + 0.0425008i 0.000925462 + 0.00160295i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.0550 + 22.5606i 0.378155 + 0.848478i
\(708\) 0 0
\(709\) −10.2436 17.7424i −0.384705 0.666328i 0.607023 0.794684i \(-0.292363\pi\)
−0.991728 + 0.128356i \(0.959030\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.59290 + 4.49104i −0.0971050 + 0.168191i
\(714\) 0 0
\(715\) 35.3479 + 61.2243i 1.32193 + 2.28966i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.1300 29.6700i 0.638840 1.10650i −0.346848 0.937921i \(-0.612748\pi\)
0.985688 0.168582i \(-0.0539187\pi\)
\(720\) 0 0
\(721\) −17.4681 39.1937i −0.650547 1.45965i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.25655 + 9.10461i −0.195223 + 0.338137i
\(726\) 0 0
\(727\) −7.18914 + 12.4520i −0.266631 + 0.461818i −0.967990 0.250991i \(-0.919244\pi\)
0.701359 + 0.712808i \(0.252577\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 44.2019 1.63487
\(732\) 0 0
\(733\) 39.5773 1.46182 0.730911 0.682473i \(-0.239096\pi\)
0.730911 + 0.682473i \(0.239096\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.5561 25.2119i 0.536182 0.928694i
\(738\) 0 0
\(739\) −10.8407 18.7767i −0.398783 0.690712i 0.594793 0.803879i \(-0.297234\pi\)
−0.993576 + 0.113167i \(0.963901\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.5692 + 28.6987i 0.607864 + 1.05285i 0.991592 + 0.129406i \(0.0413069\pi\)
−0.383727 + 0.923446i \(0.625360\pi\)
\(744\) 0 0
\(745\) 35.5831 1.30366
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 23.6912 + 2.48089i 0.865659 + 0.0906499i
\(750\) 0 0
\(751\) 25.9324 0.946288 0.473144 0.880985i \(-0.343119\pi\)
0.473144 + 0.880985i \(0.343119\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 26.7442 0.973320
\(756\) 0 0
\(757\) −30.5846 −1.11162 −0.555808 0.831311i \(-0.687591\pi\)
−0.555808 + 0.831311i \(0.687591\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.5295 1.32419 0.662097 0.749418i \(-0.269667\pi\)
0.662097 + 0.749418i \(0.269667\pi\)
\(762\) 0 0
\(763\) −11.5505 + 15.9107i −0.418157 + 0.576007i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.56818 −0.0927315
\(768\) 0 0
\(769\) −21.3107 36.9113i −0.768485 1.33105i −0.938384 0.345593i \(-0.887678\pi\)
0.169900 0.985461i \(-0.445656\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.1309 27.9395i −0.580187 1.00491i −0.995457 0.0952148i \(-0.969646\pi\)
0.415270 0.909698i \(-0.363687\pi\)
\(774\) 0 0
\(775\) −5.30051 + 9.18076i −0.190400 + 0.329783i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.0800351 −0.00286755
\(780\) 0 0
\(781\) 32.4765 1.16210
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.327420 0.567107i 0.0116861 0.0202409i
\(786\) 0 0
\(787\) 15.3838 26.6455i 0.548373 0.949810i −0.450013 0.893022i \(-0.648581\pi\)
0.998386 0.0567879i \(-0.0180859\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.2156 30.6017i 0.789895 1.08807i
\(792\) 0 0
\(793\) 22.0496 38.1910i 0.783003 1.35620i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.59378 + 6.22460i 0.127298 + 0.220487i 0.922629 0.385689i \(-0.126036\pi\)
−0.795331 + 0.606176i \(0.792703\pi\)
\(798\) 0 0
\(799\) −5.39144 + 9.33824i −0.190735 + 0.330363i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.68725 + 15.0468i 0.306566 + 0.530989i
\(804\) 0 0
\(805\) 1.81448 + 4.07120i 0.0639520 + 0.143491i
\(806\) 0 0