Properties

Label 3024.2.t.l.289.8
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.8
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.8

$q$-expansion

\(f(q)\) \(=\) \(q+1.83657 q^{5} +(-2.45061 + 0.997255i) q^{7} +O(q^{10})\) \(q+1.83657 q^{5} +(-2.45061 + 0.997255i) q^{7} -3.09719 q^{11} +(2.40225 + 4.16081i) q^{13} +(-1.87185 - 3.24214i) q^{17} +(2.71408 - 4.70093i) q^{19} -7.95829 q^{23} -1.62701 q^{25} +(0.325267 - 0.563379i) q^{29} +(0.518342 - 0.897795i) q^{31} +(-4.50072 + 1.83153i) q^{35} +(0.873712 - 1.51331i) q^{37} +(-2.52260 - 4.36927i) q^{41} +(6.09645 - 10.5594i) q^{43} +(2.30691 + 3.99569i) q^{47} +(5.01096 - 4.88776i) q^{49} +(-4.55082 - 7.88226i) q^{53} -5.68821 q^{55} +(2.89863 - 5.02058i) q^{59} +(2.40623 + 4.16771i) q^{61} +(4.41190 + 7.64163i) q^{65} +(-7.23870 + 12.5378i) q^{67} -5.00714 q^{71} +(-1.81364 - 3.14131i) q^{73} +(7.59000 - 3.08869i) q^{77} +(-7.17904 - 12.4345i) q^{79} +(3.83139 - 6.63616i) q^{83} +(-3.43778 - 5.95441i) q^{85} +(5.76798 - 9.99043i) q^{89} +(-10.0364 - 7.80087i) q^{91} +(4.98461 - 8.63360i) q^{95} +(-1.04480 + 1.80964i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.83657 0.821340 0.410670 0.911784i \(-0.365295\pi\)
0.410670 + 0.911784i \(0.365295\pi\)
\(6\) 0 0
\(7\) −2.45061 + 0.997255i −0.926243 + 0.376927i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.09719 −0.933838 −0.466919 0.884300i \(-0.654636\pi\)
−0.466919 + 0.884300i \(0.654636\pi\)
\(12\) 0 0
\(13\) 2.40225 + 4.16081i 0.666263 + 1.15400i 0.978941 + 0.204143i \(0.0654406\pi\)
−0.312678 + 0.949859i \(0.601226\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.87185 3.24214i −0.453990 0.786333i 0.544640 0.838670i \(-0.316666\pi\)
−0.998629 + 0.0523367i \(0.983333\pi\)
\(18\) 0 0
\(19\) 2.71408 4.70093i 0.622654 1.07847i −0.366336 0.930483i \(-0.619388\pi\)
0.988990 0.147985i \(-0.0472788\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.95829 −1.65942 −0.829709 0.558197i \(-0.811493\pi\)
−0.829709 + 0.558197i \(0.811493\pi\)
\(24\) 0 0
\(25\) −1.62701 −0.325401
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.325267 0.563379i 0.0604006 0.104617i −0.834244 0.551396i \(-0.814096\pi\)
0.894645 + 0.446779i \(0.147429\pi\)
\(30\) 0 0
\(31\) 0.518342 0.897795i 0.0930970 0.161249i −0.815716 0.578453i \(-0.803657\pi\)
0.908813 + 0.417204i \(0.136990\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.50072 + 1.83153i −0.760760 + 0.309585i
\(36\) 0 0
\(37\) 0.873712 1.51331i 0.143637 0.248787i −0.785226 0.619209i \(-0.787453\pi\)
0.928864 + 0.370422i \(0.120787\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.52260 4.36927i −0.393964 0.682365i 0.599005 0.800745i \(-0.295563\pi\)
−0.992968 + 0.118381i \(0.962230\pi\)
\(42\) 0 0
\(43\) 6.09645 10.5594i 0.929699 1.61029i 0.145876 0.989303i \(-0.453400\pi\)
0.783824 0.620984i \(-0.213267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.30691 + 3.99569i 0.336498 + 0.582832i 0.983771 0.179426i \(-0.0574241\pi\)
−0.647273 + 0.762258i \(0.724091\pi\)
\(48\) 0 0
\(49\) 5.01096 4.88776i 0.715852 0.698252i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.55082 7.88226i −0.625104 1.08271i −0.988521 0.151085i \(-0.951723\pi\)
0.363417 0.931626i \(-0.381610\pi\)
\(54\) 0 0
\(55\) −5.68821 −0.766998
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.89863 5.02058i 0.377370 0.653624i −0.613309 0.789843i \(-0.710162\pi\)
0.990679 + 0.136219i \(0.0434952\pi\)
\(60\) 0 0
\(61\) 2.40623 + 4.16771i 0.308086 + 0.533620i 0.977944 0.208869i \(-0.0669783\pi\)
−0.669858 + 0.742489i \(0.733645\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.41190 + 7.64163i 0.547228 + 0.947827i
\(66\) 0 0
\(67\) −7.23870 + 12.5378i −0.884348 + 1.53174i −0.0378895 + 0.999282i \(0.512063\pi\)
−0.846459 + 0.532454i \(0.821270\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00714 −0.594238 −0.297119 0.954840i \(-0.596026\pi\)
−0.297119 + 0.954840i \(0.596026\pi\)
\(72\) 0 0
\(73\) −1.81364 3.14131i −0.212270 0.367662i 0.740155 0.672437i \(-0.234752\pi\)
−0.952425 + 0.304774i \(0.901419\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.59000 3.08869i 0.864961 0.351989i
\(78\) 0 0
\(79\) −7.17904 12.4345i −0.807705 1.39899i −0.914450 0.404699i \(-0.867376\pi\)
0.106745 0.994286i \(-0.465957\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.83139 6.63616i 0.420550 0.728414i −0.575443 0.817842i \(-0.695171\pi\)
0.995993 + 0.0894279i \(0.0285038\pi\)
\(84\) 0 0
\(85\) −3.43778 5.95441i −0.372880 0.645847i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.76798 9.99043i 0.611405 1.05898i −0.379599 0.925151i \(-0.623938\pi\)
0.991004 0.133833i \(-0.0427286\pi\)
\(90\) 0 0
\(91\) −10.0364 7.80087i −1.05210 0.817753i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.98461 8.63360i 0.511410 0.885788i
\(96\) 0 0
\(97\) −1.04480 + 1.80964i −0.106083 + 0.183741i −0.914180 0.405308i \(-0.867164\pi\)
0.808097 + 0.589049i \(0.200498\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.4532 1.63716 0.818578 0.574395i \(-0.194763\pi\)
0.818578 + 0.574395i \(0.194763\pi\)
\(102\) 0 0
\(103\) 7.74692 0.763327 0.381663 0.924301i \(-0.375351\pi\)
0.381663 + 0.924301i \(0.375351\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74746 6.49080i 0.362281 0.627489i −0.626055 0.779779i \(-0.715331\pi\)
0.988336 + 0.152290i \(0.0486647\pi\)
\(108\) 0 0
\(109\) −4.30644 7.45897i −0.412482 0.714440i 0.582678 0.812703i \(-0.302005\pi\)
−0.995160 + 0.0982628i \(0.968671\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.55747 + 2.69762i 0.146514 + 0.253771i 0.929937 0.367719i \(-0.119861\pi\)
−0.783422 + 0.621490i \(0.786528\pi\)
\(114\) 0 0
\(115\) −14.6160 −1.36295
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.82040 + 6.07850i 0.716895 + 0.557215i
\(120\) 0 0
\(121\) −1.40741 −0.127946
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1710 −1.08860
\(126\) 0 0
\(127\) −10.8866 −0.966033 −0.483017 0.875611i \(-0.660459\pi\)
−0.483017 + 0.875611i \(0.660459\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.0558 −1.40280 −0.701401 0.712767i \(-0.747442\pi\)
−0.701401 + 0.712767i \(0.747442\pi\)
\(132\) 0 0
\(133\) −1.96313 + 14.2268i −0.170225 + 1.23362i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.4406 −1.14831 −0.574155 0.818747i \(-0.694669\pi\)
−0.574155 + 0.818747i \(0.694669\pi\)
\(138\) 0 0
\(139\) 4.06953 + 7.04863i 0.345173 + 0.597857i 0.985385 0.170341i \(-0.0544869\pi\)
−0.640212 + 0.768198i \(0.721154\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.44022 12.8868i −0.622182 1.07765i
\(144\) 0 0
\(145\) 0.597376 1.03469i 0.0496094 0.0859260i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.52958 −0.616847 −0.308424 0.951249i \(-0.599801\pi\)
−0.308424 + 0.951249i \(0.599801\pi\)
\(150\) 0 0
\(151\) 5.67232 0.461607 0.230803 0.973000i \(-0.425865\pi\)
0.230803 + 0.973000i \(0.425865\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.951973 1.64886i 0.0764643 0.132440i
\(156\) 0 0
\(157\) −0.218381 + 0.378248i −0.0174287 + 0.0301875i −0.874608 0.484830i \(-0.838881\pi\)
0.857179 + 0.515018i \(0.172215\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 19.5026 7.93644i 1.53702 0.625479i
\(162\) 0 0
\(163\) −9.12649 + 15.8076i −0.714842 + 1.23814i 0.248178 + 0.968714i \(0.420168\pi\)
−0.963020 + 0.269429i \(0.913165\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.765108 + 1.32521i 0.0592058 + 0.102548i 0.894109 0.447849i \(-0.147810\pi\)
−0.834903 + 0.550397i \(0.814477\pi\)
\(168\) 0 0
\(169\) −5.04157 + 8.73226i −0.387813 + 0.671713i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.08474 + 1.87883i 0.0824716 + 0.142845i 0.904311 0.426874i \(-0.140385\pi\)
−0.821839 + 0.569719i \(0.807052\pi\)
\(174\) 0 0
\(175\) 3.98716 1.62254i 0.301401 0.122653i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.08263 1.87517i −0.0809195 0.140157i 0.822726 0.568439i \(-0.192452\pi\)
−0.903645 + 0.428282i \(0.859119\pi\)
\(180\) 0 0
\(181\) 0.557838 0.0414638 0.0207319 0.999785i \(-0.493400\pi\)
0.0207319 + 0.999785i \(0.493400\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.60463 2.77931i 0.117975 0.204339i
\(186\) 0 0
\(187\) 5.79747 + 10.0415i 0.423953 + 0.734308i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.9998 + 20.7843i 0.868277 + 1.50390i 0.863756 + 0.503911i \(0.168106\pi\)
0.00452179 + 0.999990i \(0.498561\pi\)
\(192\) 0 0
\(193\) 10.6397 18.4285i 0.765862 1.32651i −0.173928 0.984758i \(-0.555646\pi\)
0.939790 0.341753i \(-0.111021\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.8768 1.05993 0.529964 0.848020i \(-0.322205\pi\)
0.529964 + 0.848020i \(0.322205\pi\)
\(198\) 0 0
\(199\) −6.17884 10.7021i −0.438006 0.758649i 0.559530 0.828810i \(-0.310982\pi\)
−0.997536 + 0.0701616i \(0.977649\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.235270 + 1.70500i −0.0165127 + 0.119667i
\(204\) 0 0
\(205\) −4.63293 8.02447i −0.323578 0.560453i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.40604 + 14.5597i −0.581458 + 1.00711i
\(210\) 0 0
\(211\) −8.65802 14.9961i −0.596043 1.03238i −0.993399 0.114712i \(-0.963406\pi\)
0.397356 0.917664i \(-0.369928\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.1966 19.3930i 0.763599 1.32259i
\(216\) 0 0
\(217\) −0.374923 + 2.71706i −0.0254514 + 0.184446i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.99328 15.5768i 0.604953 1.04781i
\(222\) 0 0
\(223\) −1.14489 + 1.98301i −0.0766677 + 0.132792i −0.901810 0.432132i \(-0.857761\pi\)
0.825143 + 0.564925i \(0.191095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.56026 −0.236303 −0.118152 0.992996i \(-0.537697\pi\)
−0.118152 + 0.992996i \(0.537697\pi\)
\(228\) 0 0
\(229\) −26.9597 −1.78155 −0.890775 0.454445i \(-0.849837\pi\)
−0.890775 + 0.454445i \(0.849837\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.7321 + 18.5885i −0.703081 + 1.21777i 0.264298 + 0.964441i \(0.414860\pi\)
−0.967380 + 0.253332i \(0.918474\pi\)
\(234\) 0 0
\(235\) 4.23681 + 7.33837i 0.276379 + 0.478703i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.65970 + 8.07083i 0.301411 + 0.522059i 0.976456 0.215718i \(-0.0692091\pi\)
−0.675045 + 0.737777i \(0.735876\pi\)
\(240\) 0 0
\(241\) −20.2007 −1.30124 −0.650620 0.759404i \(-0.725491\pi\)
−0.650620 + 0.759404i \(0.725491\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.20299 8.97673i 0.587958 0.573502i
\(246\) 0 0
\(247\) 26.0796 1.65940
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.1837 1.71582 0.857910 0.513800i \(-0.171762\pi\)
0.857910 + 0.513800i \(0.171762\pi\)
\(252\) 0 0
\(253\) 24.6483 1.54963
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.4821 −1.77667 −0.888333 0.459200i \(-0.848136\pi\)
−0.888333 + 0.459200i \(0.848136\pi\)
\(258\) 0 0
\(259\) −0.631966 + 4.57985i −0.0392685 + 0.284578i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.59814 0.221871 0.110935 0.993828i \(-0.464615\pi\)
0.110935 + 0.993828i \(0.464615\pi\)
\(264\) 0 0
\(265\) −8.35791 14.4763i −0.513422 0.889274i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.2261 19.4443i −0.684470 1.18554i −0.973603 0.228248i \(-0.926700\pi\)
0.289133 0.957289i \(-0.406633\pi\)
\(270\) 0 0
\(271\) 14.7935 25.6231i 0.898642 1.55649i 0.0694115 0.997588i \(-0.477888\pi\)
0.829231 0.558906i \(-0.188779\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.03915 0.303872
\(276\) 0 0
\(277\) −20.3867 −1.22492 −0.612459 0.790503i \(-0.709819\pi\)
−0.612459 + 0.790503i \(0.709819\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.23968 3.87924i 0.133608 0.231416i −0.791457 0.611225i \(-0.790677\pi\)
0.925065 + 0.379809i \(0.124010\pi\)
\(282\) 0 0
\(283\) 1.03840 1.79856i 0.0617264 0.106913i −0.833511 0.552503i \(-0.813673\pi\)
0.895237 + 0.445590i \(0.147006\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.5392 + 8.19169i 0.622108 + 0.483540i
\(288\) 0 0
\(289\) 1.49237 2.58486i 0.0877865 0.152051i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.887340 + 1.53692i 0.0518389 + 0.0897877i 0.890780 0.454434i \(-0.150158\pi\)
−0.838942 + 0.544222i \(0.816825\pi\)
\(294\) 0 0
\(295\) 5.32355 9.22066i 0.309949 0.536847i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −19.1178 33.1129i −1.10561 1.91497i
\(300\) 0 0
\(301\) −4.40963 + 31.9566i −0.254167 + 1.84195i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.41921 + 7.65429i 0.253043 + 0.438283i
\(306\) 0 0
\(307\) −19.6315 −1.12043 −0.560215 0.828347i \(-0.689282\pi\)
−0.560215 + 0.828347i \(0.689282\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.65795 11.5319i 0.377538 0.653915i −0.613166 0.789954i \(-0.710104\pi\)
0.990703 + 0.136040i \(0.0434375\pi\)
\(312\) 0 0
\(313\) −2.32641 4.02945i −0.131496 0.227758i 0.792757 0.609537i \(-0.208645\pi\)
−0.924254 + 0.381779i \(0.875311\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.06276 3.57281i −0.115856 0.200669i 0.802265 0.596967i \(-0.203628\pi\)
−0.918122 + 0.396299i \(0.870295\pi\)
\(318\) 0 0
\(319\) −1.00741 + 1.74489i −0.0564044 + 0.0976953i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.3214 −1.13071
\(324\) 0 0
\(325\) −3.90847 6.76967i −0.216803 0.375514i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.63807 7.49130i −0.531364 0.413009i
\(330\) 0 0
\(331\) 0.0220297 + 0.0381566i 0.00121086 + 0.00209727i 0.866630 0.498951i \(-0.166281\pi\)
−0.865419 + 0.501048i \(0.832948\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.2944 + 23.0266i −0.726350 + 1.25808i
\(336\) 0 0
\(337\) −13.3351 23.0970i −0.726407 1.25817i −0.958392 0.285454i \(-0.907856\pi\)
0.231986 0.972719i \(-0.425478\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.60541 + 2.78064i −0.0869376 + 0.150580i
\(342\) 0 0
\(343\) −7.40556 + 16.9752i −0.399863 + 0.916575i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.41259 + 9.37488i −0.290563 + 0.503270i −0.973943 0.226793i \(-0.927176\pi\)
0.683380 + 0.730063i \(0.260509\pi\)
\(348\) 0 0
\(349\) −2.69555 + 4.66884i −0.144290 + 0.249917i −0.929108 0.369809i \(-0.879423\pi\)
0.784818 + 0.619726i \(0.212756\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.94614 0.476155 0.238078 0.971246i \(-0.423483\pi\)
0.238078 + 0.971246i \(0.423483\pi\)
\(354\) 0 0
\(355\) −9.19596 −0.488071
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.84157 3.18969i 0.0971942 0.168345i −0.813328 0.581805i \(-0.802347\pi\)
0.910522 + 0.413460i \(0.135680\pi\)
\(360\) 0 0
\(361\) −5.23251 9.06297i −0.275395 0.476998i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.33087 5.76924i −0.174346 0.301976i
\(366\) 0 0
\(367\) 7.49976 0.391484 0.195742 0.980655i \(-0.437288\pi\)
0.195742 + 0.980655i \(0.437288\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.0129 + 14.7780i 0.987101 + 0.767235i
\(372\) 0 0
\(373\) 8.23833 0.426565 0.213282 0.976991i \(-0.431585\pi\)
0.213282 + 0.976991i \(0.431585\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.12549 0.160971
\(378\) 0 0
\(379\) 3.92853 0.201795 0.100897 0.994897i \(-0.467829\pi\)
0.100897 + 0.994897i \(0.467829\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 23.9265 1.22259 0.611293 0.791404i \(-0.290650\pi\)
0.611293 + 0.791404i \(0.290650\pi\)
\(384\) 0 0
\(385\) 13.9396 5.67260i 0.710427 0.289102i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.6575 −0.641761 −0.320881 0.947120i \(-0.603979\pi\)
−0.320881 + 0.947120i \(0.603979\pi\)
\(390\) 0 0
\(391\) 14.8967 + 25.8018i 0.753359 + 1.30486i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13.1848 22.8368i −0.663400 1.14904i
\(396\) 0 0
\(397\) −17.7703 + 30.7791i −0.891866 + 1.54476i −0.0542297 + 0.998528i \(0.517270\pi\)
−0.837636 + 0.546229i \(0.816063\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.32332 0.165959 0.0829794 0.996551i \(-0.473556\pi\)
0.0829794 + 0.996551i \(0.473556\pi\)
\(402\) 0 0
\(403\) 4.98074 0.248109
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.70605 + 4.68702i −0.134134 + 0.232327i
\(408\) 0 0
\(409\) −11.2564 + 19.4967i −0.556595 + 0.964051i 0.441182 + 0.897418i \(0.354559\pi\)
−0.997777 + 0.0666338i \(0.978774\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.09662 + 15.1942i −0.103168 + 0.747656i
\(414\) 0 0
\(415\) 7.03662 12.1878i 0.345414 0.598275i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.59772 6.23144i −0.175760 0.304426i 0.764664 0.644429i \(-0.222905\pi\)
−0.940424 + 0.340004i \(0.889572\pi\)
\(420\) 0 0
\(421\) 16.8121 29.1193i 0.819370 1.41919i −0.0867773 0.996228i \(-0.527657\pi\)
0.906147 0.422962i \(-0.139010\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.04551 + 5.27498i 0.147729 + 0.255874i
\(426\) 0 0
\(427\) −10.0530 7.81380i −0.486498 0.378136i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.4871 + 28.5565i 0.794156 + 1.37552i 0.923373 + 0.383903i \(0.125420\pi\)
−0.129217 + 0.991616i \(0.541246\pi\)
\(432\) 0 0
\(433\) 19.8977 0.956221 0.478110 0.878300i \(-0.341322\pi\)
0.478110 + 0.878300i \(0.341322\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.5995 + 37.4114i −1.03324 + 1.78963i
\(438\) 0 0
\(439\) 14.5634 + 25.2246i 0.695074 + 1.20390i 0.970156 + 0.242482i \(0.0779617\pi\)
−0.275082 + 0.961421i \(0.588705\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.88317 11.9220i −0.327029 0.566431i 0.654892 0.755723i \(-0.272714\pi\)
−0.981921 + 0.189292i \(0.939381\pi\)
\(444\) 0 0
\(445\) 10.5933 18.3481i 0.502171 0.869785i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.0958 0.570838 0.285419 0.958403i \(-0.407867\pi\)
0.285419 + 0.958403i \(0.407867\pi\)
\(450\) 0 0
\(451\) 7.81297 + 13.5325i 0.367898 + 0.637218i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −18.4325 14.3269i −0.864128 0.671653i
\(456\) 0 0
\(457\) 4.17738 + 7.23544i 0.195410 + 0.338459i 0.947035 0.321131i \(-0.104063\pi\)
−0.751625 + 0.659591i \(0.770730\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.1673 + 19.3423i −0.520112 + 0.900860i 0.479615 + 0.877479i \(0.340776\pi\)
−0.999727 + 0.0233807i \(0.992557\pi\)
\(462\) 0 0
\(463\) 0.0370790 + 0.0642228i 0.00172321 + 0.00298469i 0.866886 0.498507i \(-0.166118\pi\)
−0.865163 + 0.501492i \(0.832785\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.5828 25.2581i 0.674810 1.16880i −0.301715 0.953398i \(-0.597559\pi\)
0.976524 0.215407i \(-0.0691077\pi\)
\(468\) 0 0
\(469\) 5.23584 37.9441i 0.241769 1.75209i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.8819 + 32.7043i −0.868189 + 1.50375i
\(474\) 0 0
\(475\) −4.41583 + 7.64845i −0.202612 + 0.350935i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.9103 1.27525 0.637626 0.770346i \(-0.279917\pi\)
0.637626 + 0.770346i \(0.279917\pi\)
\(480\) 0 0
\(481\) 8.39548 0.382801
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.91884 + 3.32353i −0.0871301 + 0.150914i
\(486\) 0 0
\(487\) 2.14409 + 3.71367i 0.0971580 + 0.168283i 0.910507 0.413493i \(-0.135691\pi\)
−0.813349 + 0.581776i \(0.802358\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.22215 9.04503i −0.235672 0.408196i 0.723796 0.690015i \(-0.242396\pi\)
−0.959468 + 0.281818i \(0.909063\pi\)
\(492\) 0 0
\(493\) −2.43540 −0.109685
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.2705 4.99339i 0.550409 0.223984i
\(498\) 0 0
\(499\) 6.12624 0.274248 0.137124 0.990554i \(-0.456214\pi\)
0.137124 + 0.990554i \(0.456214\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.4469 −0.554982 −0.277491 0.960728i \(-0.589503\pi\)
−0.277491 + 0.960728i \(0.589503\pi\)
\(504\) 0 0
\(505\) 30.2175 1.34466
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.8090 −0.523425 −0.261712 0.965146i \(-0.584287\pi\)
−0.261712 + 0.965146i \(0.584287\pi\)
\(510\) 0 0
\(511\) 7.57720 + 5.88946i 0.335195 + 0.260534i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.2278 0.626950
\(516\) 0 0
\(517\) −7.14495 12.3754i −0.314235 0.544271i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.54828 9.60991i −0.243075 0.421018i 0.718514 0.695513i \(-0.244823\pi\)
−0.961589 + 0.274495i \(0.911489\pi\)
\(522\) 0 0
\(523\) −10.6209 + 18.3960i −0.464421 + 0.804401i −0.999175 0.0406065i \(-0.987071\pi\)
0.534754 + 0.845008i \(0.320404\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.88103 −0.169060
\(528\) 0 0
\(529\) 40.3343 1.75367
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.1198 20.9921i 0.524967 0.909269i
\(534\) 0 0
\(535\) 6.88248 11.9208i 0.297556 0.515382i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.5199 + 15.1383i −0.668490 + 0.652054i
\(540\) 0 0
\(541\) −6.33567 + 10.9737i −0.272392 + 0.471796i −0.969474 0.245195i \(-0.921148\pi\)
0.697082 + 0.716991i \(0.254481\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.90908 13.6989i −0.338788 0.586798i
\(546\) 0 0
\(547\) 21.4805 37.2053i 0.918438 1.59078i 0.116651 0.993173i \(-0.462784\pi\)
0.801788 0.597609i \(-0.203883\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.76560 3.05812i −0.0752173 0.130280i
\(552\) 0 0
\(553\) 29.9933 + 23.3126i 1.27545 + 0.991355i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.5129 28.6012i −0.699673 1.21187i −0.968580 0.248703i \(-0.919996\pi\)
0.268906 0.963166i \(-0.413338\pi\)
\(558\) 0 0
\(559\) 58.5807 2.47770
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.4066 + 31.8812i −0.775746 + 1.34363i 0.158629 + 0.987338i \(0.449293\pi\)
−0.934374 + 0.356293i \(0.884041\pi\)
\(564\) 0 0
\(565\) 2.86040 + 4.95437i 0.120338 + 0.208432i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.1786 + 38.4144i 0.929774 + 1.61042i 0.783698 + 0.621142i \(0.213331\pi\)
0.146075 + 0.989273i \(0.453336\pi\)
\(570\) 0 0
\(571\) −21.2936 + 36.8816i −0.891110 + 1.54345i −0.0525644 + 0.998618i \(0.516739\pi\)
−0.838546 + 0.544831i \(0.816594\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.9482 0.539977
\(576\) 0 0
\(577\) 16.3209 + 28.2687i 0.679450 + 1.17684i 0.975147 + 0.221559i \(0.0711147\pi\)
−0.295697 + 0.955282i \(0.595552\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.77129 + 20.0835i −0.114973 + 0.833205i
\(582\) 0 0
\(583\) 14.0948 + 24.4129i 0.583746 + 1.01108i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1270 + 22.7366i −0.541809 + 0.938441i 0.456991 + 0.889471i \(0.348927\pi\)
−0.998800 + 0.0489701i \(0.984406\pi\)
\(588\) 0 0
\(589\) −2.81365 4.87338i −0.115934 0.200804i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.59998 4.50330i 0.106768 0.184928i −0.807691 0.589606i \(-0.799283\pi\)
0.914459 + 0.404678i \(0.132616\pi\)
\(594\) 0 0
\(595\) 14.3627 + 11.1636i 0.588814 + 0.457663i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.1837 + 22.8349i −0.538673 + 0.933008i 0.460303 + 0.887762i \(0.347741\pi\)
−0.998976 + 0.0452465i \(0.985593\pi\)
\(600\) 0 0
\(601\) −15.4505 + 26.7611i −0.630239 + 1.09161i 0.357263 + 0.934004i \(0.383710\pi\)
−0.987503 + 0.157603i \(0.949623\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.58480 −0.105087
\(606\) 0 0
\(607\) −7.67321 −0.311446 −0.155723 0.987801i \(-0.549771\pi\)
−0.155723 + 0.987801i \(0.549771\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.0836 + 19.1973i −0.448393 + 0.776639i
\(612\) 0 0
\(613\) 7.97498 + 13.8131i 0.322106 + 0.557905i 0.980922 0.194399i \(-0.0622758\pi\)
−0.658816 + 0.752304i \(0.728942\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.67011 + 6.35682i 0.147753 + 0.255916i 0.930397 0.366554i \(-0.119463\pi\)
−0.782644 + 0.622470i \(0.786129\pi\)
\(618\) 0 0
\(619\) −20.5684 −0.826713 −0.413357 0.910569i \(-0.635644\pi\)
−0.413357 + 0.910569i \(0.635644\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.17205 + 30.2348i −0.167150 + 1.21133i
\(624\) 0 0
\(625\) −14.2178 −0.568713
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.54182 −0.260840
\(630\) 0 0
\(631\) 5.09394 0.202787 0.101393 0.994846i \(-0.467670\pi\)
0.101393 + 0.994846i \(0.467670\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.9941 −0.793442
\(636\) 0 0
\(637\) 32.3746 + 9.10807i 1.28273 + 0.360875i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6372 −0.499140 −0.249570 0.968357i \(-0.580289\pi\)
−0.249570 + 0.968357i \(0.580289\pi\)
\(642\) 0 0
\(643\) −12.4329 21.5344i −0.490306 0.849235i 0.509632 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111579i \(0.996448\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.12339 + 1.94577i 0.0441650 + 0.0764960i 0.887263 0.461264i \(-0.152604\pi\)
−0.843098 + 0.537760i \(0.819271\pi\)
\(648\) 0 0
\(649\) −8.97762 + 15.5497i −0.352403 + 0.610379i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.05762 −0.0805207 −0.0402604 0.999189i \(-0.512819\pi\)
−0.0402604 + 0.999189i \(0.512819\pi\)
\(654\) 0 0
\(655\) −29.4876 −1.15218
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.16599 + 7.21571i −0.162284 + 0.281084i −0.935687 0.352830i \(-0.885219\pi\)
0.773403 + 0.633914i \(0.218553\pi\)
\(660\) 0 0
\(661\) −17.0463 + 29.5251i −0.663024 + 1.14839i 0.316793 + 0.948495i \(0.397394\pi\)
−0.979817 + 0.199897i \(0.935939\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.60543 + 26.1285i −0.139812 + 1.01322i
\(666\) 0 0
\(667\) −2.58857 + 4.48353i −0.100230 + 0.173603i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.45255 12.9082i −0.287702 0.498315i
\(672\) 0 0
\(673\) 0.571008 0.989016i 0.0220108 0.0381237i −0.854810 0.518941i \(-0.826327\pi\)
0.876821 + 0.480817i \(0.159660\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.1906 + 31.5070i 0.699121 + 1.21091i 0.968772 + 0.247955i \(0.0797584\pi\)
−0.269651 + 0.962958i \(0.586908\pi\)
\(678\) 0 0
\(679\) 0.755713 5.47665i 0.0290016 0.210174i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.11274 + 5.39142i 0.119106 + 0.206297i 0.919414 0.393292i \(-0.128664\pi\)
−0.800308 + 0.599589i \(0.795331\pi\)
\(684\) 0 0
\(685\) −24.6846 −0.943152
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.8644 37.8702i 0.832967 1.44274i
\(690\) 0 0
\(691\) −19.9130 34.4903i −0.757525 1.31207i −0.944109 0.329633i \(-0.893075\pi\)
0.186584 0.982439i \(-0.440258\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.47398 + 12.9453i 0.283504 + 0.491044i
\(696\) 0 0
\(697\) −9.44384 + 16.3572i −0.357711 + 0.619573i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 48.3337 1.82554 0.912769 0.408477i \(-0.133940\pi\)
0.912769 + 0.408477i \(0.133940\pi\)
\(702\) 0 0
\(703\) −4.74265 8.21452i −0.178873 0.309816i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.3204 + 16.4081i −1.51640 + 0.617088i
\(708\) 0 0
\(709\) 8.04198 + 13.9291i 0.302023 + 0.523119i 0.976594 0.215091i \(-0.0690048\pi\)
−0.674571 + 0.738210i \(0.735671\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.12512 + 7.14491i −0.154487 + 0.267579i
\(714\) 0 0
\(715\) −13.6645 23.6676i −0.511023 0.885117i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.0734 36.5002i 0.785906 1.36123i −0.142550 0.989788i \(-0.545530\pi\)
0.928456 0.371442i \(-0.121136\pi\)
\(720\) 0 0
\(721\) −18.9847 + 7.72566i −0.707026 + 0.287718i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.529212 + 0.916622i −0.0196544 + 0.0340425i
\(726\) 0 0
\(727\) 12.9548 22.4384i 0.480467 0.832192i −0.519282 0.854603i \(-0.673801\pi\)
0.999749 + 0.0224103i \(0.00713401\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −45.6465 −1.68830
\(732\) 0 0
\(733\) 20.4054 0.753692 0.376846 0.926276i \(-0.377009\pi\)
0.376846 + 0.926276i \(0.377009\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.4196 38.8320i 0.825838 1.43039i
\(738\) 0 0
\(739\) 11.8953 + 20.6033i 0.437576 + 0.757903i 0.997502 0.0706392i \(-0.0225039\pi\)
−0.559926 + 0.828542i \(0.689171\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.6320 + 37.4678i 0.793603 + 1.37456i 0.923723 + 0.383062i \(0.125130\pi\)
−0.130120 + 0.991498i \(0.541536\pi\)
\(744\) 0 0
\(745\) −13.8286 −0.506641
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.71058 + 19.6436i −0.0990426 + 0.717761i
\(750\) 0 0
\(751\) 14.3693 0.524343 0.262172 0.965021i \(-0.415561\pi\)
0.262172 + 0.965021i \(0.415561\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.4176 0.379136
\(756\) 0 0
\(757\) 39.7854 1.44603 0.723013 0.690835i \(-0.242757\pi\)
0.723013 + 0.690835i \(0.242757\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.3933 0.811756 0.405878 0.913927i \(-0.366966\pi\)
0.405878 + 0.913927i \(0.366966\pi\)
\(762\) 0 0
\(763\) 17.9919 + 13.9844i 0.651350 + 0.506269i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.8529 1.00571
\(768\) 0 0
\(769\) −1.45546 2.52093i −0.0524853 0.0909071i 0.838589 0.544764i \(-0.183381\pi\)
−0.891074 + 0.453857i \(0.850048\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.68612 + 11.5807i 0.240483 + 0.416529i 0.960852 0.277062i \(-0.0893609\pi\)
−0.720369 + 0.693591i \(0.756028\pi\)
\(774\) 0 0
\(775\) −0.843347 + 1.46072i −0.0302939 + 0.0524706i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.3862 −0.981211
\(780\) 0 0
\(781\) 15.5081 0.554922
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.401073 + 0.694679i −0.0143149 + 0.0247941i
\(786\) 0 0
\(787\) −11.9264 + 20.6571i −0.425130 + 0.736347i −0.996433 0.0843925i \(-0.973105\pi\)
0.571302 + 0.820740i \(0.306438\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.50696 5.05761i −0.231361 0.179828i
\(792\) 0 0
\(793\) −11.5607 + 20.0237i −0.410533 + 0.711063i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.10559 + 10.5752i 0.216271 + 0.374593i 0.953665 0.300870i \(-0.0972772\pi\)
−0.737394 + 0.675463i \(0.763944\pi\)
\(798\) 0 0
\(799\) 8.63639 14.9587i 0.305533 0.529199i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.61718 + 9.72923i 0.198226 + 0.343337i
\(804\) 0 0
\(805\) 35.8180 14.5758i 1.26242 0.513731i
\(806\) 0 0