Properties

Label 3024.2.t.l.289.7
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.7
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.7

$q$-expansion

\(f(q)\) \(=\) \(q+1.58188 q^{5} +(1.80922 + 1.93047i) q^{7} +O(q^{10})\) \(q+1.58188 q^{5} +(1.80922 + 1.93047i) q^{7} +5.17139 q^{11} +(-0.681985 - 1.18123i) q^{13} +(2.30781 + 3.99724i) q^{17} +(-0.0321742 + 0.0557274i) q^{19} +6.74395 q^{23} -2.49767 q^{25} +(-4.70787 + 8.15427i) q^{29} +(-1.33139 + 2.30604i) q^{31} +(2.86196 + 3.05376i) q^{35} +(0.880766 - 1.52553i) q^{37} +(0.858924 + 1.48770i) q^{41} +(5.12012 - 8.86831i) q^{43} +(-2.60417 - 4.51056i) q^{47} +(-0.453429 + 6.98530i) q^{49} +(0.479996 + 0.831377i) q^{53} +8.18049 q^{55} +(4.66676 - 8.08307i) q^{59} +(-7.19512 - 12.4623i) q^{61} +(-1.07882 - 1.86856i) q^{65} +(-6.24903 + 10.8236i) q^{67} -4.49160 q^{71} +(-0.941655 - 1.63099i) q^{73} +(9.35619 + 9.98321i) q^{77} +(3.26752 + 5.65951i) q^{79} +(-5.08661 + 8.81026i) q^{83} +(3.65066 + 6.32314i) q^{85} +(4.12369 - 7.14243i) q^{89} +(1.04647 - 3.45366i) q^{91} +(-0.0508957 + 0.0881539i) q^{95} +(-7.26638 + 12.5857i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58188 0.707436 0.353718 0.935352i \(-0.384917\pi\)
0.353718 + 0.935352i \(0.384917\pi\)
\(6\) 0 0
\(7\) 1.80922 + 1.93047i 0.683822 + 0.729649i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.17139 1.55923 0.779616 0.626258i \(-0.215414\pi\)
0.779616 + 0.626258i \(0.215414\pi\)
\(12\) 0 0
\(13\) −0.681985 1.18123i −0.189149 0.327615i 0.755818 0.654782i \(-0.227239\pi\)
−0.944967 + 0.327167i \(0.893906\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.30781 + 3.99724i 0.559726 + 0.969473i 0.997519 + 0.0703975i \(0.0224268\pi\)
−0.437794 + 0.899076i \(0.644240\pi\)
\(18\) 0 0
\(19\) −0.0321742 + 0.0557274i −0.00738128 + 0.0127847i −0.869692 0.493594i \(-0.835683\pi\)
0.862311 + 0.506379i \(0.169016\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.74395 1.40621 0.703105 0.711086i \(-0.251796\pi\)
0.703105 + 0.711086i \(0.251796\pi\)
\(24\) 0 0
\(25\) −2.49767 −0.499534
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.70787 + 8.15427i −0.874229 + 1.51421i −0.0166475 + 0.999861i \(0.505299\pi\)
−0.857582 + 0.514348i \(0.828034\pi\)
\(30\) 0 0
\(31\) −1.33139 + 2.30604i −0.239125 + 0.414177i −0.960463 0.278406i \(-0.910194\pi\)
0.721339 + 0.692583i \(0.243527\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.86196 + 3.05376i 0.483760 + 0.516180i
\(36\) 0 0
\(37\) 0.880766 1.52553i 0.144797 0.250796i −0.784500 0.620129i \(-0.787080\pi\)
0.929297 + 0.369333i \(0.120414\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.858924 + 1.48770i 0.134141 + 0.232340i 0.925269 0.379311i \(-0.123839\pi\)
−0.791128 + 0.611651i \(0.790506\pi\)
\(42\) 0 0
\(43\) 5.12012 8.86831i 0.780811 1.35240i −0.150658 0.988586i \(-0.548139\pi\)
0.931470 0.363819i \(-0.118527\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.60417 4.51056i −0.379857 0.657932i 0.611184 0.791489i \(-0.290694\pi\)
−0.991041 + 0.133556i \(0.957360\pi\)
\(48\) 0 0
\(49\) −0.453429 + 6.98530i −0.0647756 + 0.997900i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.479996 + 0.831377i 0.0659325 + 0.114198i 0.897107 0.441813i \(-0.145664\pi\)
−0.831175 + 0.556011i \(0.812331\pi\)
\(54\) 0 0
\(55\) 8.18049 1.10306
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.66676 8.08307i 0.607561 1.05233i −0.384080 0.923300i \(-0.625481\pi\)
0.991641 0.129027i \(-0.0411852\pi\)
\(60\) 0 0
\(61\) −7.19512 12.4623i −0.921241 1.59564i −0.797498 0.603321i \(-0.793844\pi\)
−0.123742 0.992314i \(-0.539490\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.07882 1.86856i −0.133811 0.231767i
\(66\) 0 0
\(67\) −6.24903 + 10.8236i −0.763441 + 1.32232i 0.177626 + 0.984098i \(0.443158\pi\)
−0.941067 + 0.338220i \(0.890175\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.49160 −0.533055 −0.266527 0.963827i \(-0.585876\pi\)
−0.266527 + 0.963827i \(0.585876\pi\)
\(72\) 0 0
\(73\) −0.941655 1.63099i −0.110212 0.190893i 0.805643 0.592401i \(-0.201820\pi\)
−0.915856 + 0.401507i \(0.868486\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.35619 + 9.98321i 1.06624 + 1.13769i
\(78\) 0 0
\(79\) 3.26752 + 5.65951i 0.367625 + 0.636745i 0.989194 0.146615i \(-0.0468377\pi\)
−0.621569 + 0.783360i \(0.713504\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.08661 + 8.81026i −0.558328 + 0.967052i 0.439309 + 0.898336i \(0.355223\pi\)
−0.997636 + 0.0687156i \(0.978110\pi\)
\(84\) 0 0
\(85\) 3.65066 + 6.32314i 0.395970 + 0.685840i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.12369 7.14243i 0.437110 0.757096i −0.560355 0.828252i \(-0.689335\pi\)
0.997465 + 0.0711559i \(0.0226688\pi\)
\(90\) 0 0
\(91\) 1.04647 3.45366i 0.109700 0.362042i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0508957 + 0.0881539i −0.00522178 + 0.00904440i
\(96\) 0 0
\(97\) −7.26638 + 12.5857i −0.737789 + 1.27789i 0.215700 + 0.976460i \(0.430797\pi\)
−0.953489 + 0.301428i \(0.902537\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.24620 −0.621520 −0.310760 0.950488i \(-0.600584\pi\)
−0.310760 + 0.950488i \(0.600584\pi\)
\(102\) 0 0
\(103\) 5.77762 0.569286 0.284643 0.958634i \(-0.408125\pi\)
0.284643 + 0.958634i \(0.408125\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.251126 + 0.434963i −0.0242773 + 0.0420494i −0.877909 0.478828i \(-0.841062\pi\)
0.853632 + 0.520877i \(0.174395\pi\)
\(108\) 0 0
\(109\) −2.37218 4.10874i −0.227214 0.393546i 0.729767 0.683696i \(-0.239628\pi\)
−0.956981 + 0.290149i \(0.906295\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.11328 + 1.92825i 0.104728 + 0.181395i 0.913627 0.406553i \(-0.133269\pi\)
−0.808899 + 0.587948i \(0.799936\pi\)
\(114\) 0 0
\(115\) 10.6681 0.994804
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.54121 + 11.6870i −0.324623 + 1.07135i
\(120\) 0 0
\(121\) 15.7432 1.43120
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8604 −1.06082
\(126\) 0 0
\(127\) 18.6057 1.65099 0.825494 0.564410i \(-0.190896\pi\)
0.825494 + 0.564410i \(0.190896\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.5404 1.18303 0.591515 0.806294i \(-0.298530\pi\)
0.591515 + 0.806294i \(0.298530\pi\)
\(132\) 0 0
\(133\) −0.165791 + 0.0387119i −0.0143759 + 0.00335675i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7420 −1.17406 −0.587029 0.809566i \(-0.699702\pi\)
−0.587029 + 0.809566i \(0.699702\pi\)
\(138\) 0 0
\(139\) −6.79328 11.7663i −0.576198 0.998005i −0.995910 0.0903476i \(-0.971202\pi\)
0.419712 0.907657i \(-0.362131\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.52681 6.10861i −0.294927 0.510828i
\(144\) 0 0
\(145\) −7.44726 + 12.8990i −0.618461 + 1.07121i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.96066 −0.488317 −0.244158 0.969735i \(-0.578512\pi\)
−0.244158 + 0.969735i \(0.578512\pi\)
\(150\) 0 0
\(151\) −8.54142 −0.695091 −0.347546 0.937663i \(-0.612985\pi\)
−0.347546 + 0.937663i \(0.612985\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.10610 + 3.64786i −0.169166 + 0.293004i
\(156\) 0 0
\(157\) 1.31996 2.28623i 0.105344 0.182461i −0.808535 0.588449i \(-0.799739\pi\)
0.913879 + 0.405987i \(0.133072\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.2013 + 13.0190i 0.961597 + 1.02604i
\(162\) 0 0
\(163\) 8.87875 15.3785i 0.695438 1.20453i −0.274595 0.961560i \(-0.588544\pi\)
0.970033 0.242973i \(-0.0781228\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.98937 + 6.90979i 0.308706 + 0.534695i 0.978080 0.208231i \(-0.0667706\pi\)
−0.669373 + 0.742926i \(0.733437\pi\)
\(168\) 0 0
\(169\) 5.56979 9.64716i 0.428446 0.742090i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.83170 + 6.63670i 0.291319 + 0.504579i 0.974122 0.226023i \(-0.0725726\pi\)
−0.682803 + 0.730603i \(0.739239\pi\)
\(174\) 0 0
\(175\) −4.51884 4.82168i −0.341592 0.364485i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.7864 + 20.4147i 0.880958 + 1.52586i 0.850277 + 0.526335i \(0.176434\pi\)
0.0306808 + 0.999529i \(0.490232\pi\)
\(180\) 0 0
\(181\) 17.3700 1.29110 0.645551 0.763717i \(-0.276628\pi\)
0.645551 + 0.763717i \(0.276628\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.39326 2.41320i 0.102435 0.177422i
\(186\) 0 0
\(187\) 11.9346 + 20.6713i 0.872742 + 1.51163i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.42330 4.19728i −0.175344 0.303704i 0.764936 0.644106i \(-0.222770\pi\)
−0.940280 + 0.340402i \(0.889437\pi\)
\(192\) 0 0
\(193\) 7.32091 12.6802i 0.526970 0.912739i −0.472536 0.881312i \(-0.656661\pi\)
0.999506 0.0314278i \(-0.0100054\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.1996 1.36791 0.683957 0.729522i \(-0.260257\pi\)
0.683957 + 0.729522i \(0.260257\pi\)
\(198\) 0 0
\(199\) −6.50796 11.2721i −0.461337 0.799060i 0.537691 0.843142i \(-0.319297\pi\)
−0.999028 + 0.0440825i \(0.985964\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −24.2591 + 5.66448i −1.70266 + 0.397569i
\(204\) 0 0
\(205\) 1.35871 + 2.35336i 0.0948965 + 0.164366i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.166385 + 0.288188i −0.0115091 + 0.0199344i
\(210\) 0 0
\(211\) 7.43389 + 12.8759i 0.511770 + 0.886412i 0.999907 + 0.0136450i \(0.00434348\pi\)
−0.488137 + 0.872767i \(0.662323\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.09940 14.0286i 0.552374 0.956740i
\(216\) 0 0
\(217\) −6.86052 + 1.60192i −0.465722 + 0.108746i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.14778 5.45212i 0.211743 0.366749i
\(222\) 0 0
\(223\) −11.2085 + 19.4136i −0.750574 + 1.30003i 0.196971 + 0.980409i \(0.436890\pi\)
−0.947545 + 0.319623i \(0.896444\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.89450 0.258487 0.129243 0.991613i \(-0.458745\pi\)
0.129243 + 0.991613i \(0.458745\pi\)
\(228\) 0 0
\(229\) −1.38717 −0.0916669 −0.0458334 0.998949i \(-0.514594\pi\)
−0.0458334 + 0.998949i \(0.514594\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.99057 + 15.5721i −0.588992 + 1.02016i 0.405373 + 0.914151i \(0.367142\pi\)
−0.994365 + 0.106013i \(0.966192\pi\)
\(234\) 0 0
\(235\) −4.11947 7.13514i −0.268725 0.465445i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.68043 4.64264i −0.173382 0.300307i 0.766218 0.642581i \(-0.222136\pi\)
−0.939600 + 0.342274i \(0.888803\pi\)
\(240\) 0 0
\(241\) 0.416592 0.0268351 0.0134175 0.999910i \(-0.495729\pi\)
0.0134175 + 0.999910i \(0.495729\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.717269 + 11.0499i −0.0458246 + 0.705951i
\(246\) 0 0
\(247\) 0.0877694 0.00558464
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.5606 1.42401 0.712006 0.702173i \(-0.247787\pi\)
0.712006 + 0.702173i \(0.247787\pi\)
\(252\) 0 0
\(253\) 34.8756 2.19261
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.0461 0.689039 0.344520 0.938779i \(-0.388042\pi\)
0.344520 + 0.938779i \(0.388042\pi\)
\(258\) 0 0
\(259\) 4.53850 1.05973i 0.282008 0.0658486i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −25.4620 −1.57006 −0.785028 0.619460i \(-0.787352\pi\)
−0.785028 + 0.619460i \(0.787352\pi\)
\(264\) 0 0
\(265\) 0.759294 + 1.31514i 0.0466430 + 0.0807881i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.78957 4.83168i −0.170083 0.294593i 0.768366 0.640011i \(-0.221070\pi\)
−0.938449 + 0.345419i \(0.887737\pi\)
\(270\) 0 0
\(271\) 1.46645 2.53997i 0.0890806 0.154292i −0.818042 0.575158i \(-0.804940\pi\)
0.907123 + 0.420866i \(0.138274\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.9164 −0.778889
\(276\) 0 0
\(277\) 22.0917 1.32736 0.663680 0.748016i \(-0.268993\pi\)
0.663680 + 0.748016i \(0.268993\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.81009 4.86721i 0.167636 0.290354i −0.769952 0.638101i \(-0.779720\pi\)
0.937588 + 0.347748i \(0.113053\pi\)
\(282\) 0 0
\(283\) 10.6502 18.4466i 0.633086 1.09654i −0.353831 0.935309i \(-0.615121\pi\)
0.986917 0.161228i \(-0.0515454\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.31798 + 4.34971i −0.0777977 + 0.256755i
\(288\) 0 0
\(289\) −2.15195 + 3.72729i −0.126585 + 0.219252i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.1128 24.4440i −0.824477 1.42804i −0.902319 0.431070i \(-0.858136\pi\)
0.0778418 0.996966i \(-0.475197\pi\)
\(294\) 0 0
\(295\) 7.38224 12.7864i 0.429811 0.744454i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.59927 7.96617i −0.265983 0.460696i
\(300\) 0 0
\(301\) 26.3834 6.16050i 1.52072 0.355086i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11.3818 19.7138i −0.651719 1.12881i
\(306\) 0 0
\(307\) 2.41329 0.137734 0.0688669 0.997626i \(-0.478062\pi\)
0.0688669 + 0.997626i \(0.478062\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.76840 + 8.25911i −0.270391 + 0.468331i −0.968962 0.247210i \(-0.920486\pi\)
0.698571 + 0.715541i \(0.253820\pi\)
\(312\) 0 0
\(313\) −16.3010 28.2341i −0.921386 1.59589i −0.797273 0.603619i \(-0.793725\pi\)
−0.124112 0.992268i \(-0.539608\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.54977 2.68428i −0.0870438 0.150764i 0.819216 0.573484i \(-0.194409\pi\)
−0.906260 + 0.422720i \(0.861075\pi\)
\(318\) 0 0
\(319\) −24.3462 + 42.1689i −1.36313 + 2.36100i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.297008 −0.0165260
\(324\) 0 0
\(325\) 1.70337 + 2.95033i 0.0944862 + 0.163655i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.99597 13.1879i 0.220305 0.727071i
\(330\) 0 0
\(331\) −1.83825 3.18394i −0.101039 0.175005i 0.811074 0.584944i \(-0.198883\pi\)
−0.912113 + 0.409939i \(0.865550\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.88519 + 17.1216i −0.540086 + 0.935456i
\(336\) 0 0
\(337\) 6.15866 + 10.6671i 0.335483 + 0.581074i 0.983578 0.180486i \(-0.0577670\pi\)
−0.648094 + 0.761560i \(0.724434\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.88514 + 11.9254i −0.372851 + 0.645797i
\(342\) 0 0
\(343\) −14.3053 + 11.7626i −0.772412 + 0.635122i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.85078 15.3300i 0.475135 0.822958i −0.524460 0.851435i \(-0.675733\pi\)
0.999594 + 0.0284778i \(0.00906598\pi\)
\(348\) 0 0
\(349\) 0.562639 0.974519i 0.0301174 0.0521648i −0.850574 0.525856i \(-0.823745\pi\)
0.880691 + 0.473691i \(0.157079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.9625 0.583475 0.291738 0.956498i \(-0.405767\pi\)
0.291738 + 0.956498i \(0.405767\pi\)
\(354\) 0 0
\(355\) −7.10515 −0.377102
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.4733 + 23.3364i −0.711092 + 1.23165i 0.253356 + 0.967373i \(0.418466\pi\)
−0.964448 + 0.264274i \(0.914868\pi\)
\(360\) 0 0
\(361\) 9.49793 + 16.4509i 0.499891 + 0.865837i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.48958 2.58003i −0.0779682 0.135045i
\(366\) 0 0
\(367\) −34.8273 −1.81797 −0.908986 0.416826i \(-0.863142\pi\)
−0.908986 + 0.416826i \(0.863142\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.736530 + 2.43076i −0.0382387 + 0.126199i
\(372\) 0 0
\(373\) −23.1585 −1.19910 −0.599551 0.800336i \(-0.704654\pi\)
−0.599551 + 0.800336i \(0.704654\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.8428 0.661437
\(378\) 0 0
\(379\) −22.7259 −1.16735 −0.583676 0.811987i \(-0.698386\pi\)
−0.583676 + 0.811987i \(0.698386\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 23.2041 1.18567 0.592837 0.805322i \(-0.298008\pi\)
0.592837 + 0.805322i \(0.298008\pi\)
\(384\) 0 0
\(385\) 14.8003 + 15.7922i 0.754294 + 0.804844i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.13474 0.463149 0.231575 0.972817i \(-0.425612\pi\)
0.231575 + 0.972817i \(0.425612\pi\)
\(390\) 0 0
\(391\) 15.5637 + 26.9572i 0.787092 + 1.36328i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.16881 + 8.95265i 0.260071 + 0.450456i
\(396\) 0 0
\(397\) −19.2126 + 33.2773i −0.964255 + 1.67014i −0.252652 + 0.967557i \(0.581303\pi\)
−0.711603 + 0.702582i \(0.752031\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.94696 −0.147164 −0.0735821 0.997289i \(-0.523443\pi\)
−0.0735821 + 0.997289i \(0.523443\pi\)
\(402\) 0 0
\(403\) 3.63196 0.180921
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.55478 7.88912i 0.225772 0.391049i
\(408\) 0 0
\(409\) −3.30296 + 5.72089i −0.163321 + 0.282880i −0.936058 0.351847i \(-0.885554\pi\)
0.772737 + 0.634726i \(0.218887\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0473 5.61503i 1.18329 0.276297i
\(414\) 0 0
\(415\) −8.04638 + 13.9367i −0.394981 + 0.684127i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.381961 0.661576i −0.0186600 0.0323201i 0.856545 0.516073i \(-0.172607\pi\)
−0.875205 + 0.483753i \(0.839273\pi\)
\(420\) 0 0
\(421\) −2.48798 + 4.30931i −0.121257 + 0.210023i −0.920264 0.391299i \(-0.872026\pi\)
0.799007 + 0.601322i \(0.205359\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.76414 9.98378i −0.279602 0.484285i
\(426\) 0 0
\(427\) 11.0406 36.4371i 0.534290 1.76331i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.01856 6.96035i −0.193567 0.335268i 0.752863 0.658178i \(-0.228672\pi\)
−0.946430 + 0.322909i \(0.895339\pi\)
\(432\) 0 0
\(433\) −10.8006 −0.519043 −0.259522 0.965737i \(-0.583565\pi\)
−0.259522 + 0.965737i \(0.583565\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.216981 + 0.375823i −0.0103796 + 0.0179780i
\(438\) 0 0
\(439\) −10.0597 17.4239i −0.480122 0.831596i 0.519618 0.854399i \(-0.326074\pi\)
−0.999740 + 0.0228028i \(0.992741\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.60623 + 7.97822i 0.218848 + 0.379057i 0.954456 0.298351i \(-0.0964366\pi\)
−0.735608 + 0.677408i \(0.763103\pi\)
\(444\) 0 0
\(445\) 6.52316 11.2984i 0.309227 0.535597i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.4840 1.06109 0.530544 0.847658i \(-0.321988\pi\)
0.530544 + 0.847658i \(0.321988\pi\)
\(450\) 0 0
\(451\) 4.44183 + 7.69347i 0.209158 + 0.362271i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.65539 5.46327i 0.0776058 0.256122i
\(456\) 0 0
\(457\) −9.39776 16.2774i −0.439609 0.761425i 0.558050 0.829807i \(-0.311550\pi\)
−0.997659 + 0.0683823i \(0.978216\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.3773 + 17.9739i −0.483317 + 0.837129i −0.999816 0.0191582i \(-0.993901\pi\)
0.516500 + 0.856287i \(0.327235\pi\)
\(462\) 0 0
\(463\) −10.0414 17.3922i −0.466663 0.808284i 0.532612 0.846360i \(-0.321211\pi\)
−0.999275 + 0.0380753i \(0.987877\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.6015 25.2905i 0.675676 1.17030i −0.300595 0.953752i \(-0.597185\pi\)
0.976271 0.216553i \(-0.0694813\pi\)
\(468\) 0 0
\(469\) −32.2006 + 7.51880i −1.48689 + 0.347186i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 26.4781 45.8615i 1.21747 2.10871i
\(474\) 0 0
\(475\) 0.0803606 0.139189i 0.00368720 0.00638642i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −40.0654 −1.83064 −0.915319 0.402731i \(-0.868061\pi\)
−0.915319 + 0.402731i \(0.868061\pi\)
\(480\) 0 0
\(481\) −2.40268 −0.109553
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.4945 + 19.9091i −0.521939 + 0.904024i
\(486\) 0 0
\(487\) −9.32801 16.1566i −0.422692 0.732125i 0.573509 0.819199i \(-0.305582\pi\)
−0.996202 + 0.0870742i \(0.972248\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.285132 0.493864i −0.0128678 0.0222878i 0.859520 0.511102i \(-0.170763\pi\)
−0.872388 + 0.488815i \(0.837429\pi\)
\(492\) 0 0
\(493\) −43.4594 −1.95731
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.12630 8.67090i −0.364514 0.388943i
\(498\) 0 0
\(499\) 0.928593 0.0415695 0.0207848 0.999784i \(-0.493384\pi\)
0.0207848 + 0.999784i \(0.493384\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.27170 −0.145878 −0.0729389 0.997336i \(-0.523238\pi\)
−0.0729389 + 0.997336i \(0.523238\pi\)
\(504\) 0 0
\(505\) −9.88071 −0.439686
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.96781 −0.397491 −0.198746 0.980051i \(-0.563687\pi\)
−0.198746 + 0.980051i \(0.563687\pi\)
\(510\) 0 0
\(511\) 1.44492 4.76867i 0.0639196 0.210953i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.13948 0.402734
\(516\) 0 0
\(517\) −13.4672 23.3258i −0.592286 1.02587i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.37649 + 9.31235i 0.235548 + 0.407982i 0.959432 0.281940i \(-0.0909781\pi\)
−0.723884 + 0.689922i \(0.757645\pi\)
\(522\) 0 0
\(523\) 16.2796 28.1970i 0.711856 1.23297i −0.252304 0.967648i \(-0.581188\pi\)
0.964160 0.265322i \(-0.0854784\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.2904 −0.535377
\(528\) 0 0
\(529\) 22.4808 0.977427
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.17155 2.02918i 0.0507453 0.0878935i
\(534\) 0 0
\(535\) −0.397250 + 0.688057i −0.0171746 + 0.0297473i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.34486 + 36.1237i −0.101000 + 1.55596i
\(540\) 0 0
\(541\) −3.46359 + 5.99911i −0.148911 + 0.257922i −0.930825 0.365464i \(-0.880910\pi\)
0.781914 + 0.623386i \(0.214244\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.75250 6.49952i −0.160739 0.278409i
\(546\) 0 0
\(547\) 15.8974 27.5351i 0.679725 1.17732i −0.295339 0.955392i \(-0.595433\pi\)
0.975064 0.221925i \(-0.0712340\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.302944 0.524715i −0.0129059 0.0223536i
\(552\) 0 0
\(553\) −5.01385 + 16.5472i −0.213211 + 0.703657i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.1679 24.5395i −0.600314 1.03977i −0.992773 0.120005i \(-0.961709\pi\)
0.392460 0.919769i \(-0.371624\pi\)
\(558\) 0 0
\(559\) −13.9674 −0.590758
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.3270 38.6715i 0.940972 1.62981i 0.177350 0.984148i \(-0.443248\pi\)
0.763622 0.645664i \(-0.223419\pi\)
\(564\) 0 0
\(565\) 1.76106 + 3.05025i 0.0740885 + 0.128325i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.6102 18.3775i −0.444804 0.770423i 0.553235 0.833025i \(-0.313393\pi\)
−0.998039 + 0.0626026i \(0.980060\pi\)
\(570\) 0 0
\(571\) 5.94786 10.3020i 0.248910 0.431125i −0.714313 0.699826i \(-0.753261\pi\)
0.963224 + 0.268701i \(0.0865943\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.8442 −0.702450
\(576\) 0 0
\(577\) −19.3490 33.5135i −0.805511 1.39519i −0.915946 0.401302i \(-0.868558\pi\)
0.110435 0.993883i \(-0.464776\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −26.2107 + 6.12018i −1.08741 + 0.253908i
\(582\) 0 0
\(583\) 2.48224 + 4.29937i 0.102804 + 0.178062i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.92138 17.1843i 0.409499 0.709274i −0.585334 0.810792i \(-0.699037\pi\)
0.994834 + 0.101518i \(0.0323701\pi\)
\(588\) 0 0
\(589\) −0.0856730 0.148390i −0.00353010 0.00611431i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.9566 + 18.9774i −0.449933 + 0.779307i −0.998381 0.0568775i \(-0.981886\pi\)
0.548448 + 0.836185i \(0.315219\pi\)
\(594\) 0 0
\(595\) −5.60176 + 18.4875i −0.229650 + 0.757912i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.5223 + 28.6174i −0.675081 + 1.16928i 0.301364 + 0.953509i \(0.402558\pi\)
−0.976445 + 0.215766i \(0.930775\pi\)
\(600\) 0 0
\(601\) 11.4951 19.9100i 0.468893 0.812147i −0.530475 0.847701i \(-0.677986\pi\)
0.999368 + 0.0355541i \(0.0113196\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.9038 1.01248
\(606\) 0 0
\(607\) −27.6564 −1.12254 −0.561269 0.827634i \(-0.689686\pi\)
−0.561269 + 0.827634i \(0.689686\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.55201 + 6.15226i −0.143699 + 0.248894i
\(612\) 0 0
\(613\) −15.7684 27.3116i −0.636879 1.10311i −0.986114 0.166072i \(-0.946892\pi\)
0.349235 0.937035i \(-0.386442\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.7513 + 18.6217i 0.432830 + 0.749683i 0.997116 0.0758961i \(-0.0241817\pi\)
−0.564286 + 0.825580i \(0.690848\pi\)
\(618\) 0 0
\(619\) −28.2522 −1.13555 −0.567776 0.823183i \(-0.692196\pi\)
−0.567776 + 0.823183i \(0.692196\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.2489 4.96160i 0.851320 0.198782i
\(624\) 0 0
\(625\) −6.27330 −0.250932
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.13056 0.324187
\(630\) 0 0
\(631\) 9.12550 0.363281 0.181640 0.983365i \(-0.441859\pi\)
0.181640 + 0.983365i \(0.441859\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 29.4319 1.16797
\(636\) 0 0
\(637\) 8.56050 4.22826i 0.339179 0.167530i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −32.8978 −1.29939 −0.649693 0.760197i \(-0.725103\pi\)
−0.649693 + 0.760197i \(0.725103\pi\)
\(642\) 0 0
\(643\) −10.1276 17.5415i −0.399392 0.691767i 0.594259 0.804274i \(-0.297445\pi\)
−0.993651 + 0.112506i \(0.964112\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.67441 9.82837i −0.223084 0.386393i 0.732659 0.680596i \(-0.238279\pi\)
−0.955743 + 0.294203i \(0.904946\pi\)
\(648\) 0 0
\(649\) 24.1336 41.8007i 0.947328 1.64082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.58036 −0.140110 −0.0700552 0.997543i \(-0.522318\pi\)
−0.0700552 + 0.997543i \(0.522318\pi\)
\(654\) 0 0
\(655\) 21.4192 0.836918
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.13582 15.8237i 0.355881 0.616404i −0.631387 0.775468i \(-0.717514\pi\)
0.987268 + 0.159064i \(0.0508475\pi\)
\(660\) 0 0
\(661\) −1.11696 + 1.93462i −0.0434446 + 0.0752482i −0.886930 0.461904i \(-0.847167\pi\)
0.843485 + 0.537152i \(0.180500\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.262260 + 0.0612374i −0.0101700 + 0.00237468i
\(666\) 0 0
\(667\) −31.7496 + 54.9919i −1.22935 + 2.12930i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −37.2087 64.4474i −1.43643 2.48797i
\(672\) 0 0
\(673\) −12.4804 + 21.6166i −0.481083 + 0.833260i −0.999764 0.0217074i \(-0.993090\pi\)
0.518681 + 0.854968i \(0.326423\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.90633 17.1583i −0.380731 0.659446i 0.610436 0.792066i \(-0.290994\pi\)
−0.991167 + 0.132620i \(0.957661\pi\)
\(678\) 0 0
\(679\) −37.4429 + 8.74287i −1.43693 + 0.335521i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.72871 + 9.92242i 0.219203 + 0.379671i 0.954565 0.298004i \(-0.0963209\pi\)
−0.735361 + 0.677675i \(0.762988\pi\)
\(684\) 0 0
\(685\) −21.7381 −0.830571
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.654700 1.13397i 0.0249421 0.0432010i
\(690\) 0 0
\(691\) 20.2552 + 35.0831i 0.770545 + 1.33462i 0.937265 + 0.348619i \(0.113349\pi\)
−0.166719 + 0.986004i \(0.553317\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.7461 18.6128i −0.407624 0.706025i
\(696\) 0 0
\(697\) −3.96446 + 6.86665i −0.150165 + 0.260093i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.5416 1.11577 0.557885 0.829918i \(-0.311613\pi\)
0.557885 + 0.829918i \(0.311613\pi\)
\(702\) 0 0
\(703\) 0.0566760 + 0.0981657i 0.00213758 + 0.00370239i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.3008 12.0581i −0.425009 0.453492i
\(708\) 0 0
\(709\) 18.7407 + 32.4599i 0.703822 + 1.21906i 0.967115 + 0.254340i \(0.0818581\pi\)
−0.263293 + 0.964716i \(0.584809\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.97883 + 15.5518i −0.336260 + 0.582419i
\(714\) 0 0
\(715\) −5.57897 9.66306i −0.208642 0.361378i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.35418 11.0058i 0.236971 0.410445i −0.722873 0.690981i \(-0.757179\pi\)
0.959844 + 0.280536i \(0.0905121\pi\)
\(720\) 0 0
\(721\) 10.4530 + 11.1535i 0.389290 + 0.415379i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.7587 20.3667i 0.436707 0.756399i
\(726\) 0 0
\(727\) −19.9463 + 34.5480i −0.739768 + 1.28132i 0.212832 + 0.977089i \(0.431731\pi\)
−0.952600 + 0.304227i \(0.901602\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 47.2650 1.74816
\(732\) 0 0
\(733\) −44.8182 −1.65540 −0.827699 0.561172i \(-0.810350\pi\)
−0.827699 + 0.561172i \(0.810350\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.3162 + 55.9732i −1.19038 + 2.06180i
\(738\) 0 0
\(739\) 6.64954 + 11.5173i 0.244607 + 0.423672i 0.962021 0.272975i \(-0.0880076\pi\)
−0.717414 + 0.696647i \(0.754674\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.15562 + 3.73365i 0.0790822 + 0.136974i 0.902854 0.429947i \(-0.141468\pi\)
−0.823772 + 0.566921i \(0.808134\pi\)
\(744\) 0 0
\(745\) −9.42903 −0.345453
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.29402 + 0.302153i −0.0472826 + 0.0110404i
\(750\) 0 0
\(751\) 43.5303 1.58844 0.794221 0.607629i \(-0.207879\pi\)
0.794221 + 0.607629i \(0.207879\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.5115 −0.491733
\(756\) 0 0
\(757\) 34.6790 1.26043 0.630215 0.776420i \(-0.282967\pi\)
0.630215 + 0.776420i \(0.282967\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.51946 0.127580 0.0637902 0.997963i \(-0.479681\pi\)
0.0637902 + 0.997963i \(0.479681\pi\)
\(762\) 0 0
\(763\) 3.64000 12.0131i 0.131777 0.434902i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.7307 −0.459677
\(768\) 0 0
\(769\) −19.5075 33.7879i −0.703457 1.21842i −0.967245 0.253843i \(-0.918305\pi\)
0.263788 0.964581i \(-0.415028\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −23.2169 40.2128i −0.835054 1.44636i −0.893987 0.448094i \(-0.852103\pi\)
0.0589329 0.998262i \(-0.481230\pi\)
\(774\) 0 0
\(775\) 3.32538 5.75972i 0.119451 0.206895i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.110541 −0.00396054
\(780\) 0 0
\(781\) −23.2278 −0.831156
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.08801 3.61654i 0.0745242 0.129080i
\(786\) 0 0
\(787\) 23.7212 41.0863i 0.845569 1.46457i −0.0395575 0.999217i \(-0.512595\pi\)
0.885126 0.465351i \(-0.154072\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.70827 + 5.63778i −0.0607390 + 0.200456i
\(792\) 0 0
\(793\) −9.81393 + 16.9982i −0.348503 + 0.603625i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.69773 13.3329i −0.272668 0.472274i 0.696876 0.717191i \(-0.254573\pi\)
−0.969544 + 0.244917i \(0.921239\pi\)
\(798\) 0 0
\(799\) 12.0198 20.8190i 0.425232 0.736523i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.86966 8.43450i −0.171847 0.297647i
\(804\) 0 0
\(805\) 19.3009 + 20.5944i 0.680269 + 0.725858i
\(806\) 0