Properties

Label 3024.2.t.l.289.4
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.4
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.4

$q$-expansion

\(f(q)\) \(=\) \(q-1.68316 q^{5} +(-0.960133 + 2.46539i) q^{7} +O(q^{10})\) \(q-1.68316 q^{5} +(-0.960133 + 2.46539i) q^{7} +1.24498 q^{11} +(1.96039 + 3.39550i) q^{13} +(1.62691 + 2.81788i) q^{17} +(-2.36192 + 4.09097i) q^{19} -0.398135 q^{23} -2.16699 q^{25} +(3.19896 - 5.54076i) q^{29} +(-0.289184 + 0.500881i) q^{31} +(1.61605 - 4.14963i) q^{35} +(2.72146 - 4.71371i) q^{37} +(-4.20216 - 7.27836i) q^{41} +(-2.46299 + 4.26603i) q^{43} +(0.212595 + 0.368225i) q^{47} +(-5.15629 - 4.73420i) q^{49} +(0.466315 + 0.807681i) q^{53} -2.09550 q^{55} +(-3.02527 + 5.23992i) q^{59} +(-5.10459 - 8.84140i) q^{61} +(-3.29965 - 5.71516i) q^{65} +(-4.70976 + 8.15754i) q^{67} +8.46617 q^{71} +(6.82340 + 11.8185i) q^{73} +(-1.19535 + 3.06936i) q^{77} +(-2.76670 - 4.79207i) q^{79} +(-8.03669 + 13.9199i) q^{83} +(-2.73833 - 4.74293i) q^{85} +(6.03776 - 10.4577i) q^{89} +(-10.2535 + 1.57300i) q^{91} +(3.97549 - 6.88575i) q^{95} +(-5.86046 + 10.1506i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.68316 −0.752730 −0.376365 0.926471i \(-0.622826\pi\)
−0.376365 + 0.926471i \(0.622826\pi\)
\(6\) 0 0
\(7\) −0.960133 + 2.46539i −0.362896 + 0.931830i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.24498 0.375376 0.187688 0.982229i \(-0.439901\pi\)
0.187688 + 0.982229i \(0.439901\pi\)
\(12\) 0 0
\(13\) 1.96039 + 3.39550i 0.543715 + 0.941743i 0.998687 + 0.0512366i \(0.0163162\pi\)
−0.454971 + 0.890506i \(0.650350\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.62691 + 2.81788i 0.394582 + 0.683437i 0.993048 0.117712i \(-0.0375559\pi\)
−0.598465 + 0.801149i \(0.704223\pi\)
\(18\) 0 0
\(19\) −2.36192 + 4.09097i −0.541863 + 0.938534i 0.456935 + 0.889500i \(0.348947\pi\)
−0.998797 + 0.0490333i \(0.984386\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.398135 −0.0830170 −0.0415085 0.999138i \(-0.513216\pi\)
−0.0415085 + 0.999138i \(0.513216\pi\)
\(24\) 0 0
\(25\) −2.16699 −0.433397
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.19896 5.54076i 0.594032 1.02889i −0.399651 0.916667i \(-0.630869\pi\)
0.993683 0.112226i \(-0.0357979\pi\)
\(30\) 0 0
\(31\) −0.289184 + 0.500881i −0.0519389 + 0.0899608i −0.890826 0.454345i \(-0.849873\pi\)
0.838887 + 0.544306i \(0.183207\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.61605 4.14963i 0.273163 0.701416i
\(36\) 0 0
\(37\) 2.72146 4.71371i 0.447405 0.774928i −0.550811 0.834630i \(-0.685682\pi\)
0.998216 + 0.0597015i \(0.0190149\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.20216 7.27836i −0.656267 1.13669i −0.981574 0.191080i \(-0.938801\pi\)
0.325307 0.945608i \(-0.394532\pi\)
\(42\) 0 0
\(43\) −2.46299 + 4.26603i −0.375603 + 0.650563i −0.990417 0.138109i \(-0.955898\pi\)
0.614814 + 0.788672i \(0.289231\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.212595 + 0.368225i 0.0310101 + 0.0537112i 0.881114 0.472904i \(-0.156794\pi\)
−0.850104 + 0.526615i \(0.823461\pi\)
\(48\) 0 0
\(49\) −5.15629 4.73420i −0.736613 0.676315i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.466315 + 0.807681i 0.0640533 + 0.110944i 0.896274 0.443501i \(-0.146264\pi\)
−0.832220 + 0.554445i \(0.812931\pi\)
\(54\) 0 0
\(55\) −2.09550 −0.282557
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.02527 + 5.23992i −0.393856 + 0.682179i −0.992954 0.118496i \(-0.962193\pi\)
0.599098 + 0.800676i \(0.295526\pi\)
\(60\) 0 0
\(61\) −5.10459 8.84140i −0.653575 1.13203i −0.982249 0.187582i \(-0.939935\pi\)
0.328674 0.944444i \(-0.393398\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.29965 5.71516i −0.409271 0.708878i
\(66\) 0 0
\(67\) −4.70976 + 8.15754i −0.575389 + 0.996602i 0.420611 + 0.907241i \(0.361816\pi\)
−0.995999 + 0.0893612i \(0.971517\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.46617 1.00475 0.502375 0.864650i \(-0.332460\pi\)
0.502375 + 0.864650i \(0.332460\pi\)
\(72\) 0 0
\(73\) 6.82340 + 11.8185i 0.798619 + 1.38325i 0.920516 + 0.390705i \(0.127769\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.19535 + 3.06936i −0.136222 + 0.349786i
\(78\) 0 0
\(79\) −2.76670 4.79207i −0.311278 0.539149i 0.667361 0.744734i \(-0.267424\pi\)
−0.978639 + 0.205585i \(0.934090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.03669 + 13.9199i −0.882141 + 1.52791i −0.0331848 + 0.999449i \(0.510565\pi\)
−0.848956 + 0.528463i \(0.822768\pi\)
\(84\) 0 0
\(85\) −2.73833 4.74293i −0.297014 0.514444i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.03776 10.4577i 0.640001 1.10851i −0.345431 0.938444i \(-0.612267\pi\)
0.985432 0.170070i \(-0.0543993\pi\)
\(90\) 0 0
\(91\) −10.2535 + 1.57300i −1.07486 + 0.164895i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.97549 6.88575i 0.407876 0.706463i
\(96\) 0 0
\(97\) −5.86046 + 10.1506i −0.595040 + 1.03064i 0.398501 + 0.917168i \(0.369530\pi\)
−0.993541 + 0.113472i \(0.963803\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.40605 −0.537922 −0.268961 0.963151i \(-0.586680\pi\)
−0.268961 + 0.963151i \(0.586680\pi\)
\(102\) 0 0
\(103\) −14.6204 −1.44059 −0.720294 0.693669i \(-0.755993\pi\)
−0.720294 + 0.693669i \(0.755993\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.40209 + 5.89259i −0.328892 + 0.569658i −0.982292 0.187354i \(-0.940009\pi\)
0.653400 + 0.757013i \(0.273342\pi\)
\(108\) 0 0
\(109\) 8.37636 + 14.5083i 0.802310 + 1.38964i 0.918092 + 0.396367i \(0.129729\pi\)
−0.115783 + 0.993275i \(0.536938\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.77154 11.7287i −0.637013 1.10334i −0.986085 0.166243i \(-0.946836\pi\)
0.349072 0.937096i \(-0.386497\pi\)
\(114\) 0 0
\(115\) 0.670124 0.0624894
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.50922 + 1.30541i −0.780039 + 0.119667i
\(120\) 0 0
\(121\) −9.45002 −0.859093
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0632 1.07896
\(126\) 0 0
\(127\) −10.5904 −0.939748 −0.469874 0.882734i \(-0.655701\pi\)
−0.469874 + 0.882734i \(0.655701\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −22.3638 −1.95394 −0.976968 0.213387i \(-0.931551\pi\)
−0.976968 + 0.213387i \(0.931551\pi\)
\(132\) 0 0
\(133\) −7.81808 9.75094i −0.677914 0.845514i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.9540 −1.53391 −0.766957 0.641699i \(-0.778230\pi\)
−0.766957 + 0.641699i \(0.778230\pi\)
\(138\) 0 0
\(139\) −0.570825 0.988699i −0.0484168 0.0838603i 0.840801 0.541344i \(-0.182084\pi\)
−0.889218 + 0.457483i \(0.848751\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44065 + 4.22733i 0.204098 + 0.353507i
\(144\) 0 0
\(145\) −5.38434 + 9.32596i −0.447145 + 0.774479i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.6583 −1.44663 −0.723313 0.690521i \(-0.757381\pi\)
−0.723313 + 0.690521i \(0.757381\pi\)
\(150\) 0 0
\(151\) 15.2354 1.23984 0.619919 0.784666i \(-0.287166\pi\)
0.619919 + 0.784666i \(0.287166\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.486741 0.843060i 0.0390960 0.0677162i
\(156\) 0 0
\(157\) 6.81439 11.8029i 0.543847 0.941971i −0.454831 0.890578i \(-0.650300\pi\)
0.998678 0.0513933i \(-0.0163662\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.382263 0.981559i 0.0301265 0.0773577i
\(162\) 0 0
\(163\) 4.04726 7.01005i 0.317006 0.549070i −0.662856 0.748747i \(-0.730656\pi\)
0.979862 + 0.199677i \(0.0639893\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.07739 3.59814i −0.160753 0.278433i 0.774386 0.632714i \(-0.218059\pi\)
−0.935139 + 0.354281i \(0.884726\pi\)
\(168\) 0 0
\(169\) −1.18629 + 2.05471i −0.0912529 + 0.158055i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.91730 + 11.9811i 0.525913 + 0.910907i 0.999544 + 0.0301845i \(0.00960947\pi\)
−0.473632 + 0.880723i \(0.657057\pi\)
\(174\) 0 0
\(175\) 2.08059 5.34247i 0.157278 0.403852i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.71167 8.16084i −0.352166 0.609970i 0.634462 0.772954i \(-0.281222\pi\)
−0.986629 + 0.162984i \(0.947888\pi\)
\(180\) 0 0
\(181\) 1.32133 0.0982136 0.0491068 0.998794i \(-0.484363\pi\)
0.0491068 + 0.998794i \(0.484363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.58064 + 7.93390i −0.336775 + 0.583312i
\(186\) 0 0
\(187\) 2.02546 + 3.50821i 0.148117 + 0.256546i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.14271 14.1036i −0.589186 1.02050i −0.994339 0.106251i \(-0.966115\pi\)
0.405153 0.914249i \(-0.367218\pi\)
\(192\) 0 0
\(193\) −1.28077 + 2.21837i −0.0921921 + 0.159681i −0.908433 0.418030i \(-0.862721\pi\)
0.816241 + 0.577711i \(0.196054\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.6916 −1.54546 −0.772730 0.634735i \(-0.781109\pi\)
−0.772730 + 0.634735i \(0.781109\pi\)
\(198\) 0 0
\(199\) 5.59684 + 9.69402i 0.396750 + 0.687191i 0.993323 0.115368i \(-0.0368047\pi\)
−0.596573 + 0.802559i \(0.703471\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.5887 + 13.2065i 0.743181 + 0.926917i
\(204\) 0 0
\(205\) 7.07289 + 12.2506i 0.493992 + 0.855620i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.94055 + 5.09318i −0.203402 + 0.352303i
\(210\) 0 0
\(211\) 14.1807 + 24.5616i 0.976237 + 1.69089i 0.675793 + 0.737092i \(0.263801\pi\)
0.300444 + 0.953799i \(0.402865\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.14560 7.18039i 0.282728 0.489699i
\(216\) 0 0
\(217\) −0.957211 1.19386i −0.0649797 0.0810446i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.37875 + 11.0483i −0.429081 + 0.743190i
\(222\) 0 0
\(223\) 12.6962 21.9905i 0.850202 1.47259i −0.0308242 0.999525i \(-0.509813\pi\)
0.881026 0.473068i \(-0.156853\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.62860 0.307211 0.153606 0.988132i \(-0.450911\pi\)
0.153606 + 0.988132i \(0.450911\pi\)
\(228\) 0 0
\(229\) 2.32592 0.153701 0.0768506 0.997043i \(-0.475514\pi\)
0.0768506 + 0.997043i \(0.475514\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.37989 11.0503i 0.417960 0.723929i −0.577774 0.816197i \(-0.696078\pi\)
0.995734 + 0.0922683i \(0.0294117\pi\)
\(234\) 0 0
\(235\) −0.357830 0.619780i −0.0233423 0.0404300i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0492 19.1378i −0.714714 1.23792i −0.963070 0.269252i \(-0.913223\pi\)
0.248355 0.968669i \(-0.420110\pi\)
\(240\) 0 0
\(241\) 20.0177 1.28945 0.644726 0.764414i \(-0.276972\pi\)
0.644726 + 0.764414i \(0.276972\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.67884 + 7.96840i 0.554471 + 0.509082i
\(246\) 0 0
\(247\) −18.5212 −1.17848
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.12390 −0.134059 −0.0670297 0.997751i \(-0.521352\pi\)
−0.0670297 + 0.997751i \(0.521352\pi\)
\(252\) 0 0
\(253\) −0.495671 −0.0311625
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.7630 0.796134 0.398067 0.917356i \(-0.369681\pi\)
0.398067 + 0.917356i \(0.369681\pi\)
\(258\) 0 0
\(259\) 9.00816 + 11.2352i 0.559740 + 0.698124i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.0686 −0.682522 −0.341261 0.939969i \(-0.610854\pi\)
−0.341261 + 0.939969i \(0.610854\pi\)
\(264\) 0 0
\(265\) −0.784881 1.35945i −0.0482148 0.0835105i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.77479 + 3.07403i 0.108211 + 0.187427i 0.915046 0.403351i \(-0.132154\pi\)
−0.806835 + 0.590777i \(0.798821\pi\)
\(270\) 0 0
\(271\) 0.687666 1.19107i 0.0417727 0.0723525i −0.844383 0.535740i \(-0.820033\pi\)
0.886156 + 0.463387i \(0.153366\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.69786 −0.162687
\(276\) 0 0
\(277\) −29.1617 −1.75216 −0.876079 0.482168i \(-0.839849\pi\)
−0.876079 + 0.482168i \(0.839849\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.29603 + 10.9050i −0.375590 + 0.650540i −0.990415 0.138123i \(-0.955893\pi\)
0.614826 + 0.788663i \(0.289226\pi\)
\(282\) 0 0
\(283\) −4.73028 + 8.19309i −0.281186 + 0.487029i −0.971677 0.236312i \(-0.924061\pi\)
0.690491 + 0.723341i \(0.257394\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.9786 3.37178i 1.29736 0.199030i
\(288\) 0 0
\(289\) 3.20636 5.55358i 0.188609 0.326681i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.32726 + 14.4232i 0.486484 + 0.842614i 0.999879 0.0155376i \(-0.00494598\pi\)
−0.513396 + 0.858152i \(0.671613\pi\)
\(294\) 0 0
\(295\) 5.09200 8.81960i 0.296468 0.513497i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.780502 1.35187i −0.0451376 0.0781806i
\(300\) 0 0
\(301\) −8.15262 10.1682i −0.469909 0.586085i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.59181 + 14.8815i 0.491966 + 0.852110i
\(306\) 0 0
\(307\) 9.55966 0.545599 0.272799 0.962071i \(-0.412051\pi\)
0.272799 + 0.962071i \(0.412051\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.1851 + 22.8373i −0.747658 + 1.29498i 0.201284 + 0.979533i \(0.435488\pi\)
−0.948943 + 0.315449i \(0.897845\pi\)
\(312\) 0 0
\(313\) 6.35091 + 11.0001i 0.358975 + 0.621762i 0.987790 0.155792i \(-0.0497931\pi\)
−0.628815 + 0.777555i \(0.716460\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.0165768 + 0.0287119i 0.000931047 + 0.00161262i 0.866491 0.499193i \(-0.166370\pi\)
−0.865560 + 0.500806i \(0.833037\pi\)
\(318\) 0 0
\(319\) 3.98264 6.89813i 0.222985 0.386221i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.3705 −0.855238
\(324\) 0 0
\(325\) −4.24815 7.35801i −0.235645 0.408149i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.11194 + 0.170584i −0.0613031 + 0.00940461i
\(330\) 0 0
\(331\) −2.42694 4.20358i −0.133397 0.231050i 0.791587 0.611056i \(-0.209255\pi\)
−0.924984 + 0.380006i \(0.875922\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.92726 13.7304i 0.433112 0.750173i
\(336\) 0 0
\(337\) −4.32200 7.48592i −0.235434 0.407784i 0.723965 0.689837i \(-0.242318\pi\)
−0.959399 + 0.282053i \(0.908985\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.360028 + 0.623586i −0.0194966 + 0.0337691i
\(342\) 0 0
\(343\) 16.6224 8.16680i 0.897524 0.440966i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.6116 20.1119i 0.623344 1.07966i −0.365515 0.930806i \(-0.619107\pi\)
0.988859 0.148858i \(-0.0475596\pi\)
\(348\) 0 0
\(349\) −3.76025 + 6.51295i −0.201282 + 0.348630i −0.948942 0.315452i \(-0.897844\pi\)
0.747660 + 0.664082i \(0.231177\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.919056 0.0489164 0.0244582 0.999701i \(-0.492214\pi\)
0.0244582 + 0.999701i \(0.492214\pi\)
\(354\) 0 0
\(355\) −14.2499 −0.756306
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.24300 14.2773i 0.435049 0.753527i −0.562251 0.826967i \(-0.690064\pi\)
0.997300 + 0.0734398i \(0.0233977\pi\)
\(360\) 0 0
\(361\) −1.65737 2.87066i −0.0872302 0.151087i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.4848 19.8923i −0.601144 1.04121i
\(366\) 0 0
\(367\) 12.6784 0.661808 0.330904 0.943664i \(-0.392646\pi\)
0.330904 + 0.943664i \(0.392646\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.43897 + 0.374167i −0.126625 + 0.0194258i
\(372\) 0 0
\(373\) 22.6821 1.17443 0.587217 0.809430i \(-0.300224\pi\)
0.587217 + 0.809430i \(0.300224\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.0849 1.29194
\(378\) 0 0
\(379\) −19.0925 −0.980717 −0.490358 0.871521i \(-0.663134\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.07925 −0.310635 −0.155318 0.987865i \(-0.549640\pi\)
−0.155318 + 0.987865i \(0.549640\pi\)
\(384\) 0 0
\(385\) 2.01195 5.16621i 0.102539 0.263295i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.631562 0.0320214 0.0160107 0.999872i \(-0.494903\pi\)
0.0160107 + 0.999872i \(0.494903\pi\)
\(390\) 0 0
\(391\) −0.647728 1.12190i −0.0327570 0.0567368i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.65679 + 8.06579i 0.234308 + 0.405834i
\(396\) 0 0
\(397\) −18.1830 + 31.4939i −0.912578 + 1.58063i −0.102170 + 0.994767i \(0.532579\pi\)
−0.810408 + 0.585865i \(0.800755\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.6137 1.57871 0.789357 0.613934i \(-0.210414\pi\)
0.789357 + 0.613934i \(0.210414\pi\)
\(402\) 0 0
\(403\) −2.26765 −0.112960
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.38816 5.86847i 0.167945 0.290889i
\(408\) 0 0
\(409\) −10.0906 + 17.4774i −0.498948 + 0.864203i −0.999999 0.00121422i \(-0.999614\pi\)
0.501051 + 0.865418i \(0.332947\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0138 12.4895i −0.492746 0.614567i
\(414\) 0 0
\(415\) 13.5270 23.4294i 0.664014 1.15011i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.4159 21.5049i −0.606555 1.05058i −0.991804 0.127772i \(-0.959217\pi\)
0.385248 0.922813i \(-0.374116\pi\)
\(420\) 0 0
\(421\) −5.71841 + 9.90458i −0.278698 + 0.482720i −0.971062 0.238829i \(-0.923236\pi\)
0.692363 + 0.721549i \(0.256570\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.52548 6.10631i −0.171011 0.296200i
\(426\) 0 0
\(427\) 26.6986 4.09587i 1.29203 0.198213i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.80157 + 4.85246i 0.134947 + 0.233735i 0.925577 0.378559i \(-0.123580\pi\)
−0.790630 + 0.612294i \(0.790247\pi\)
\(432\) 0 0
\(433\) −4.22555 −0.203067 −0.101534 0.994832i \(-0.532375\pi\)
−0.101534 + 0.994832i \(0.532375\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.940366 1.62876i 0.0449838 0.0779142i
\(438\) 0 0
\(439\) −17.7316 30.7120i −0.846281 1.46580i −0.884504 0.466532i \(-0.845503\pi\)
0.0382233 0.999269i \(-0.487830\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.4658 + 19.8593i 0.544755 + 0.943543i 0.998622 + 0.0524740i \(0.0167107\pi\)
−0.453867 + 0.891069i \(0.649956\pi\)
\(444\) 0 0
\(445\) −10.1625 + 17.6019i −0.481748 + 0.834412i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.4850 −0.966747 −0.483373 0.875414i \(-0.660589\pi\)
−0.483373 + 0.875414i \(0.660589\pi\)
\(450\) 0 0
\(451\) −5.23161 9.06141i −0.246347 0.426685i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 17.2582 2.64761i 0.809076 0.124122i
\(456\) 0 0
\(457\) −7.72677 13.3832i −0.361443 0.626038i 0.626755 0.779216i \(-0.284383\pi\)
−0.988199 + 0.153178i \(0.951049\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0815 + 24.3898i −0.655839 + 1.13595i 0.325844 + 0.945424i \(0.394352\pi\)
−0.981683 + 0.190523i \(0.938982\pi\)
\(462\) 0 0
\(463\) 15.3193 + 26.5338i 0.711948 + 1.23313i 0.964125 + 0.265449i \(0.0855202\pi\)
−0.252177 + 0.967681i \(0.581146\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.61798 + 11.4627i −0.306244 + 0.530429i −0.977537 0.210762i \(-0.932406\pi\)
0.671294 + 0.741191i \(0.265739\pi\)
\(468\) 0 0
\(469\) −15.5895 19.4437i −0.719857 0.897827i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.06638 + 5.31112i −0.140992 + 0.244206i
\(474\) 0 0
\(475\) 5.11826 8.86508i 0.234842 0.406758i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.0872 0.643658 0.321829 0.946798i \(-0.395702\pi\)
0.321829 + 0.946798i \(0.395702\pi\)
\(480\) 0 0
\(481\) 21.3405 0.973044
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.86407 17.0851i 0.447904 0.775793i
\(486\) 0 0
\(487\) −3.45654 5.98690i −0.156631 0.271292i 0.777021 0.629475i \(-0.216730\pi\)
−0.933652 + 0.358183i \(0.883397\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.3481 26.5837i −0.692651 1.19971i −0.970966 0.239217i \(-0.923109\pi\)
0.278315 0.960490i \(-0.410224\pi\)
\(492\) 0 0
\(493\) 20.8176 0.937578
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.12865 + 20.8724i −0.364620 + 0.936256i
\(498\) 0 0
\(499\) 22.0371 0.986518 0.493259 0.869882i \(-0.335805\pi\)
0.493259 + 0.869882i \(0.335805\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 38.9653 1.73737 0.868687 0.495361i \(-0.164964\pi\)
0.868687 + 0.495361i \(0.164964\pi\)
\(504\) 0 0
\(505\) 9.09922 0.404910
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.2941 1.25412 0.627058 0.778973i \(-0.284259\pi\)
0.627058 + 0.778973i \(0.284259\pi\)
\(510\) 0 0
\(511\) −35.6885 + 5.47503i −1.57877 + 0.242201i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.6084 1.08437
\(516\) 0 0
\(517\) 0.264676 + 0.458433i 0.0116405 + 0.0201619i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.98150 + 10.3603i 0.262054 + 0.453892i 0.966788 0.255581i \(-0.0822667\pi\)
−0.704733 + 0.709472i \(0.748933\pi\)
\(522\) 0 0
\(523\) 3.15056 5.45693i 0.137764 0.238615i −0.788886 0.614540i \(-0.789342\pi\)
0.926650 + 0.375925i \(0.122675\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.88190 −0.0819767
\(528\) 0 0
\(529\) −22.8415 −0.993108
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.4758 28.5369i 0.713645 1.23607i
\(534\) 0 0
\(535\) 5.72625 9.91815i 0.247567 0.428799i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.41948 5.89399i −0.276507 0.253872i
\(540\) 0 0
\(541\) 9.88191 17.1160i 0.424857 0.735873i −0.571550 0.820567i \(-0.693658\pi\)
0.996407 + 0.0846937i \(0.0269912\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.0987 24.4197i −0.603923 1.04602i
\(546\) 0 0
\(547\) −21.6125 + 37.4340i −0.924085 + 1.60056i −0.131059 + 0.991375i \(0.541838\pi\)
−0.793026 + 0.609188i \(0.791496\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.1114 + 26.1737i 0.643767 + 1.11504i
\(552\) 0 0
\(553\) 14.4707 2.21997i 0.615357 0.0944029i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0838 + 24.3938i 0.596748 + 1.03360i 0.993298 + 0.115584i \(0.0368740\pi\)
−0.396550 + 0.918013i \(0.629793\pi\)
\(558\) 0 0
\(559\) −19.3137 −0.816884
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.8472 + 22.2520i −0.541445 + 0.937810i 0.457377 + 0.889273i \(0.348789\pi\)
−0.998821 + 0.0485366i \(0.984544\pi\)
\(564\) 0 0
\(565\) 11.3976 + 19.7411i 0.479499 + 0.830516i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.7441 + 30.7336i 0.743870 + 1.28842i 0.950721 + 0.310048i \(0.100345\pi\)
−0.206851 + 0.978373i \(0.566321\pi\)
\(570\) 0 0
\(571\) 10.8412 18.7775i 0.453689 0.785813i −0.544923 0.838486i \(-0.683441\pi\)
0.998612 + 0.0526737i \(0.0167743\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.862754 0.0359793
\(576\) 0 0
\(577\) −7.60727 13.1762i −0.316695 0.548531i 0.663102 0.748529i \(-0.269240\pi\)
−0.979796 + 0.199998i \(0.935906\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −26.6018 33.1786i −1.10363 1.37648i
\(582\) 0 0
\(583\) 0.580553 + 1.00555i 0.0240440 + 0.0416455i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.1924 + 33.2423i −0.792157 + 1.37206i 0.132472 + 0.991187i \(0.457708\pi\)
−0.924629 + 0.380869i \(0.875625\pi\)
\(588\) 0 0
\(589\) −1.36606 2.36608i −0.0562875 0.0974928i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.25559 16.0311i 0.380081 0.658320i −0.610992 0.791637i \(-0.709229\pi\)
0.991074 + 0.133316i \(0.0425626\pi\)
\(594\) 0 0
\(595\) 14.3223 2.19721i 0.587159 0.0900770i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.8413 18.7776i 0.442962 0.767233i −0.554946 0.831887i \(-0.687261\pi\)
0.997908 + 0.0646536i \(0.0205942\pi\)
\(600\) 0 0
\(601\) 3.95776 6.85505i 0.161441 0.279623i −0.773945 0.633253i \(-0.781719\pi\)
0.935386 + 0.353630i \(0.115053\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.9059 0.646665
\(606\) 0 0
\(607\) −35.9247 −1.45814 −0.729068 0.684441i \(-0.760046\pi\)
−0.729068 + 0.684441i \(0.760046\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.833539 + 1.44373i −0.0337214 + 0.0584072i
\(612\) 0 0
\(613\) −1.60252 2.77565i −0.0647253 0.112108i 0.831847 0.555005i \(-0.187284\pi\)
−0.896572 + 0.442898i \(0.853950\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.9357 27.6015i −0.641549 1.11120i −0.985087 0.172056i \(-0.944959\pi\)
0.343538 0.939139i \(-0.388374\pi\)
\(618\) 0 0
\(619\) 20.9726 0.842959 0.421480 0.906838i \(-0.361511\pi\)
0.421480 + 0.906838i \(0.361511\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 19.9853 + 24.9262i 0.800692 + 0.998647i
\(624\) 0 0
\(625\) −9.46924 −0.378769
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.7102 0.706153
\(630\) 0 0
\(631\) −26.4435 −1.05270 −0.526349 0.850268i \(-0.676440\pi\)
−0.526349 + 0.850268i \(0.676440\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.8253 0.707377
\(636\) 0 0
\(637\) 5.96663 26.7891i 0.236407 1.06142i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.9618 1.10443 0.552213 0.833703i \(-0.313783\pi\)
0.552213 + 0.833703i \(0.313783\pi\)
\(642\) 0 0
\(643\) 6.12936 + 10.6164i 0.241718 + 0.418669i 0.961204 0.275839i \(-0.0889556\pi\)
−0.719485 + 0.694508i \(0.755622\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.49923 + 7.79290i 0.176883 + 0.306371i 0.940811 0.338931i \(-0.110065\pi\)
−0.763928 + 0.645301i \(0.776732\pi\)
\(648\) 0 0
\(649\) −3.76640 + 6.52360i −0.147844 + 0.256074i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.7901 0.891844 0.445922 0.895072i \(-0.352876\pi\)
0.445922 + 0.895072i \(0.352876\pi\)
\(654\) 0 0
\(655\) 37.6418 1.47079
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.3311 + 33.4824i −0.753033 + 1.30429i 0.193314 + 0.981137i \(0.438076\pi\)
−0.946347 + 0.323154i \(0.895257\pi\)
\(660\) 0 0
\(661\) 5.75399 9.96621i 0.223804 0.387641i −0.732156 0.681137i \(-0.761486\pi\)
0.955960 + 0.293497i \(0.0948190\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.1590 + 16.4124i 0.510286 + 0.636444i
\(666\) 0 0
\(667\) −1.27362 + 2.20597i −0.0493147 + 0.0854156i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.35511 11.0074i −0.245336 0.424935i
\(672\) 0 0
\(673\) −10.6642 + 18.4709i −0.411075 + 0.712002i −0.995008 0.0997997i \(-0.968180\pi\)
0.583933 + 0.811802i \(0.301513\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.8799 + 24.0407i 0.533449 + 0.923961i 0.999237 + 0.0390641i \(0.0124377\pi\)
−0.465788 + 0.884896i \(0.654229\pi\)
\(678\) 0 0
\(679\) −19.3984 24.1943i −0.744443 0.928491i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.66854 15.0143i −0.331692 0.574508i 0.651151 0.758948i \(-0.274286\pi\)
−0.982844 + 0.184440i \(0.940953\pi\)
\(684\) 0 0
\(685\) 30.2194 1.15462
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.82832 + 3.16675i −0.0696535 + 0.120643i
\(690\) 0 0
\(691\) 19.8023 + 34.2986i 0.753315 + 1.30478i 0.946207 + 0.323560i \(0.104880\pi\)
−0.192892 + 0.981220i \(0.561787\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.960788 + 1.66413i 0.0364448 + 0.0631242i
\(696\) 0 0
\(697\) 13.6730 23.6824i 0.517903 0.897035i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.28469 −0.275139 −0.137570 0.990492i \(-0.543929\pi\)
−0.137570 + 0.990492i \(0.543929\pi\)
\(702\) 0 0
\(703\) 12.8558 + 22.2668i 0.484864 + 0.839809i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.19052 13.3280i 0.195210 0.501251i
\(708\) 0 0
\(709\) −6.00541 10.4017i −0.225538 0.390643i 0.730943 0.682439i \(-0.239081\pi\)
−0.956481 + 0.291796i \(0.905747\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.115134 0.199418i 0.00431181 0.00746827i
\(714\) 0 0
\(715\) −4.10800 7.11526i −0.153630 0.266096i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.15819 + 3.73809i −0.0804868 + 0.139407i −0.903459 0.428674i \(-0.858981\pi\)
0.822972 + 0.568081i \(0.192314\pi\)
\(720\) 0 0
\(721\) 14.0375 36.0449i 0.522783 1.34238i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.93210 + 12.0067i −0.257452 + 0.445919i
\(726\) 0 0
\(727\) −10.2483 + 17.7506i −0.380090 + 0.658334i −0.991075 0.133308i \(-0.957440\pi\)
0.610985 + 0.791642i \(0.290774\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0282 −0.592825
\(732\) 0 0
\(733\) 25.3322 0.935666 0.467833 0.883817i \(-0.345035\pi\)
0.467833 + 0.883817i \(0.345035\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.86356 + 10.1560i −0.215987 + 0.374100i
\(738\) 0 0
\(739\) 6.63391 + 11.4903i 0.244032 + 0.422676i 0.961859 0.273545i \(-0.0881964\pi\)
−0.717827 + 0.696222i \(0.754863\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.6116 + 39.1644i 0.829538 + 1.43680i 0.898401 + 0.439176i \(0.144730\pi\)
−0.0688624 + 0.997626i \(0.521937\pi\)
\(744\) 0 0
\(745\) 29.7217 1.08892
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.2611 14.0451i −0.411471 0.513199i
\(750\) 0 0
\(751\) 28.3797 1.03559 0.517795 0.855505i \(-0.326753\pi\)
0.517795 + 0.855505i \(0.326753\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.6435 −0.933263
\(756\) 0 0
\(757\) 5.08483 0.184811 0.0924056 0.995721i \(-0.470544\pi\)
0.0924056 + 0.995721i \(0.470544\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −37.7225 −1.36744 −0.683720 0.729745i \(-0.739639\pi\)
−0.683720 + 0.729745i \(0.739639\pi\)
\(762\) 0 0
\(763\) −43.8110 + 6.72111i −1.58606 + 0.243321i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.7229 −0.856583
\(768\) 0 0
\(769\) 11.8729 + 20.5644i 0.428147 + 0.741572i 0.996709 0.0810688i \(-0.0258333\pi\)
−0.568562 + 0.822641i \(0.692500\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5347 33.8351i −0.702614 1.21696i −0.967546 0.252696i \(-0.918683\pi\)
0.264932 0.964267i \(-0.414650\pi\)
\(774\) 0 0
\(775\) 0.626657 1.08540i 0.0225102 0.0389888i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 39.7008 1.42243
\(780\) 0 0
\(781\) 10.5402 0.377159
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.4697 + 19.8661i −0.409370 + 0.709050i
\(786\) 0 0
\(787\) 1.90458 3.29882i 0.0678908 0.117590i −0.830082 0.557642i \(-0.811706\pi\)
0.897973 + 0.440051i \(0.145040\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 35.4173 5.43342i 1.25929 0.193190i
\(792\) 0 0
\(793\) 20.0140 34.6653i 0.710718 1.23100i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.8239 + 18.7476i 0.383404 + 0.664075i 0.991546 0.129753i \(-0.0414184\pi\)
−0.608143 + 0.793828i \(0.708085\pi\)
\(798\) 0 0
\(799\) −0.691743 + 1.19813i −0.0244721 + 0.0423870i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.49500 + 14.7138i 0.299782 + 0.519238i
\(804\) 0 0
\(805\) −0.643408 + 1.65212i −0.0226771 + 0.0582294i
\(806\) 0 0