Properties

Label 3024.2.t.l.289.2
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.2

$q$-expansion

\(f(q)\) \(=\) \(q-2.66802 q^{5} +(-1.94471 + 1.79391i) q^{7} +O(q^{10})\) \(q-2.66802 q^{5} +(-1.94471 + 1.79391i) q^{7} +1.36451 q^{11} +(-2.75597 - 4.77348i) q^{13} +(1.23930 + 2.14654i) q^{17} +(2.19600 - 3.80358i) q^{19} -4.69002 q^{23} +2.11832 q^{25} +(-2.94810 + 5.10625i) q^{29} +(1.55839 - 2.69921i) q^{31} +(5.18852 - 4.78617i) q^{35} +(-3.15627 + 5.46681i) q^{37} +(-1.38693 - 2.40224i) q^{41} +(4.87889 - 8.45048i) q^{43} +(5.02505 + 8.70364i) q^{47} +(0.563800 - 6.97726i) q^{49} +(1.47823 + 2.56037i) q^{53} -3.64055 q^{55} +(-1.77809 + 3.07974i) q^{59} +(-0.663043 - 1.14842i) q^{61} +(7.35297 + 12.7357i) q^{65} +(4.14937 - 7.18692i) q^{67} +12.3069 q^{71} +(-1.11577 - 1.93257i) q^{73} +(-2.65358 + 2.44781i) q^{77} +(6.41535 + 11.1117i) q^{79} +(5.15934 - 8.93625i) q^{83} +(-3.30648 - 5.72700i) q^{85} +(-7.73159 + 13.3915i) q^{89} +(13.9227 + 4.33908i) q^{91} +(-5.85896 + 10.1480i) q^{95} +(-2.55369 + 4.42311i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.66802 −1.19317 −0.596587 0.802548i \(-0.703477\pi\)
−0.596587 + 0.802548i \(0.703477\pi\)
\(6\) 0 0
\(7\) −1.94471 + 1.79391i −0.735032 + 0.678033i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.36451 0.411416 0.205708 0.978613i \(-0.434050\pi\)
0.205708 + 0.978613i \(0.434050\pi\)
\(12\) 0 0
\(13\) −2.75597 4.77348i −0.764368 1.32392i −0.940580 0.339572i \(-0.889718\pi\)
0.176212 0.984352i \(-0.443616\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.23930 + 2.14654i 0.300575 + 0.520611i 0.976266 0.216573i \(-0.0694880\pi\)
−0.675691 + 0.737185i \(0.736155\pi\)
\(18\) 0 0
\(19\) 2.19600 3.80358i 0.503797 0.872601i −0.496194 0.868212i \(-0.665269\pi\)
0.999990 0.00438950i \(-0.00139723\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.69002 −0.977936 −0.488968 0.872302i \(-0.662627\pi\)
−0.488968 + 0.872302i \(0.662627\pi\)
\(24\) 0 0
\(25\) 2.11832 0.423664
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.94810 + 5.10625i −0.547448 + 0.948207i 0.451001 + 0.892524i \(0.351067\pi\)
−0.998448 + 0.0556837i \(0.982266\pi\)
\(30\) 0 0
\(31\) 1.55839 2.69921i 0.279895 0.484792i −0.691464 0.722411i \(-0.743034\pi\)
0.971358 + 0.237619i \(0.0763671\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.18852 4.78617i 0.877021 0.809011i
\(36\) 0 0
\(37\) −3.15627 + 5.46681i −0.518887 + 0.898739i 0.480872 + 0.876791i \(0.340320\pi\)
−0.999759 + 0.0219479i \(0.993013\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.38693 2.40224i −0.216603 0.375167i 0.737164 0.675713i \(-0.236164\pi\)
−0.953767 + 0.300546i \(0.902831\pi\)
\(42\) 0 0
\(43\) 4.87889 8.45048i 0.744023 1.28869i −0.206626 0.978420i \(-0.566248\pi\)
0.950650 0.310267i \(-0.100418\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.02505 + 8.70364i 0.732979 + 1.26956i 0.955605 + 0.294652i \(0.0952039\pi\)
−0.222626 + 0.974904i \(0.571463\pi\)
\(48\) 0 0
\(49\) 0.563800 6.97726i 0.0805429 0.996751i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.47823 + 2.56037i 0.203050 + 0.351694i 0.949510 0.313737i \(-0.101581\pi\)
−0.746459 + 0.665431i \(0.768248\pi\)
\(54\) 0 0
\(55\) −3.64055 −0.490891
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.77809 + 3.07974i −0.231487 + 0.400948i −0.958246 0.285945i \(-0.907692\pi\)
0.726759 + 0.686893i \(0.241026\pi\)
\(60\) 0 0
\(61\) −0.663043 1.14842i −0.0848940 0.147041i 0.820452 0.571715i \(-0.193722\pi\)
−0.905346 + 0.424675i \(0.860388\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.35297 + 12.7357i 0.912024 + 1.57967i
\(66\) 0 0
\(67\) 4.14937 7.18692i 0.506926 0.878021i −0.493042 0.870006i \(-0.664115\pi\)
0.999968 0.00801592i \(-0.00255158\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3069 1.46056 0.730279 0.683149i \(-0.239390\pi\)
0.730279 + 0.683149i \(0.239390\pi\)
\(72\) 0 0
\(73\) −1.11577 1.93257i −0.130591 0.226190i 0.793314 0.608813i \(-0.208354\pi\)
−0.923905 + 0.382623i \(0.875021\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.65358 + 2.44781i −0.302404 + 0.278954i
\(78\) 0 0
\(79\) 6.41535 + 11.1117i 0.721783 + 1.25017i 0.960284 + 0.279023i \(0.0900106\pi\)
−0.238501 + 0.971142i \(0.576656\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.15934 8.93625i 0.566312 0.980881i −0.430615 0.902536i \(-0.641703\pi\)
0.996926 0.0783447i \(-0.0249635\pi\)
\(84\) 0 0
\(85\) −3.30648 5.72700i −0.358638 0.621180i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.73159 + 13.3915i −0.819547 + 1.41950i 0.0864698 + 0.996254i \(0.472441\pi\)
−0.906017 + 0.423242i \(0.860892\pi\)
\(90\) 0 0
\(91\) 13.9227 + 4.33908i 1.45950 + 0.454860i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.85896 + 10.1480i −0.601117 + 1.04117i
\(96\) 0 0
\(97\) −2.55369 + 4.42311i −0.259288 + 0.449099i −0.966051 0.258351i \(-0.916821\pi\)
0.706764 + 0.707450i \(0.250154\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.69496 0.268159 0.134079 0.990971i \(-0.457192\pi\)
0.134079 + 0.990971i \(0.457192\pi\)
\(102\) 0 0
\(103\) 13.0214 1.28304 0.641519 0.767107i \(-0.278304\pi\)
0.641519 + 0.767107i \(0.278304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.49753 + 2.59379i −0.144771 + 0.250751i −0.929288 0.369357i \(-0.879578\pi\)
0.784516 + 0.620108i \(0.212911\pi\)
\(108\) 0 0
\(109\) 10.0132 + 17.3434i 0.959093 + 1.66120i 0.724710 + 0.689054i \(0.241974\pi\)
0.234383 + 0.972144i \(0.424693\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.23211 + 10.7943i 0.586267 + 1.01544i 0.994716 + 0.102664i \(0.0327365\pi\)
−0.408449 + 0.912781i \(0.633930\pi\)
\(114\) 0 0
\(115\) 12.5130 1.16685
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.26077 1.95120i −0.573924 0.178866i
\(120\) 0 0
\(121\) −9.13810 −0.830737
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.68837 0.687669
\(126\) 0 0
\(127\) −15.0734 −1.33754 −0.668772 0.743467i \(-0.733180\pi\)
−0.668772 + 0.743467i \(0.733180\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.8406 1.29663 0.648316 0.761371i \(-0.275473\pi\)
0.648316 + 0.761371i \(0.275473\pi\)
\(132\) 0 0
\(133\) 2.55269 + 11.3363i 0.221346 + 0.982980i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.1559 1.72203 0.861017 0.508577i \(-0.169828\pi\)
0.861017 + 0.508577i \(0.169828\pi\)
\(138\) 0 0
\(139\) 9.91552 + 17.1742i 0.841023 + 1.45669i 0.889031 + 0.457848i \(0.151380\pi\)
−0.0480074 + 0.998847i \(0.515287\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.76056 6.51347i −0.314473 0.544684i
\(144\) 0 0
\(145\) 7.86557 13.6236i 0.653200 1.13138i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.3033 −1.41754 −0.708772 0.705438i \(-0.750750\pi\)
−0.708772 + 0.705438i \(0.750750\pi\)
\(150\) 0 0
\(151\) 3.98976 0.324682 0.162341 0.986735i \(-0.448096\pi\)
0.162341 + 0.986735i \(0.448096\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.15781 + 7.20153i −0.333963 + 0.578441i
\(156\) 0 0
\(157\) 12.0994 20.9568i 0.965637 1.67253i 0.257742 0.966214i \(-0.417022\pi\)
0.707895 0.706318i \(-0.249645\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.12073 8.41345i 0.718814 0.663073i
\(162\) 0 0
\(163\) −2.34498 + 4.06162i −0.183673 + 0.318131i −0.943129 0.332428i \(-0.892132\pi\)
0.759456 + 0.650559i \(0.225465\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.12627 10.6110i −0.474065 0.821104i 0.525494 0.850797i \(-0.323880\pi\)
−0.999559 + 0.0296928i \(0.990547\pi\)
\(168\) 0 0
\(169\) −8.69072 + 15.0528i −0.668517 + 1.15791i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.05503 7.02352i −0.308298 0.533988i 0.669692 0.742639i \(-0.266426\pi\)
−0.977990 + 0.208651i \(0.933093\pi\)
\(174\) 0 0
\(175\) −4.11952 + 3.80007i −0.311406 + 0.287258i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.91636 + 8.51538i 0.367466 + 0.636469i 0.989169 0.146784i \(-0.0468922\pi\)
−0.621703 + 0.783253i \(0.713559\pi\)
\(180\) 0 0
\(181\) 15.8876 1.18092 0.590458 0.807068i \(-0.298947\pi\)
0.590458 + 0.807068i \(0.298947\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.42097 14.5856i 0.619122 1.07235i
\(186\) 0 0
\(187\) 1.69105 + 2.92898i 0.123661 + 0.214188i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.10949 + 1.92170i 0.0802800 + 0.139049i 0.903370 0.428862i \(-0.141085\pi\)
−0.823090 + 0.567911i \(0.807752\pi\)
\(192\) 0 0
\(193\) −2.92084 + 5.05904i −0.210247 + 0.364158i −0.951792 0.306745i \(-0.900760\pi\)
0.741545 + 0.670903i \(0.234093\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.93695 −0.138002 −0.0690010 0.997617i \(-0.521981\pi\)
−0.0690010 + 0.997617i \(0.521981\pi\)
\(198\) 0 0
\(199\) −1.84540 3.19633i −0.130817 0.226582i 0.793175 0.608994i \(-0.208427\pi\)
−0.923992 + 0.382412i \(0.875093\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.42694 15.2188i −0.240524 1.06815i
\(204\) 0 0
\(205\) 3.70037 + 6.40922i 0.258445 + 0.447639i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.99647 5.19004i 0.207270 0.359002i
\(210\) 0 0
\(211\) 5.67097 + 9.82241i 0.390406 + 0.676202i 0.992503 0.122220i \(-0.0390014\pi\)
−0.602097 + 0.798423i \(0.705668\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.0170 + 22.5460i −0.887749 + 1.53763i
\(216\) 0 0
\(217\) 1.81151 + 8.04478i 0.122973 + 0.546115i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.83096 11.8316i 0.459500 0.795878i
\(222\) 0 0
\(223\) 0.965547 1.67238i 0.0646578 0.111991i −0.831884 0.554949i \(-0.812738\pi\)
0.896542 + 0.442958i \(0.146071\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.7283 1.30941 0.654705 0.755884i \(-0.272793\pi\)
0.654705 + 0.755884i \(0.272793\pi\)
\(228\) 0 0
\(229\) 26.4197 1.74586 0.872931 0.487844i \(-0.162216\pi\)
0.872931 + 0.487844i \(0.162216\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.24071 7.34513i 0.277818 0.481196i −0.693024 0.720915i \(-0.743722\pi\)
0.970842 + 0.239719i \(0.0770553\pi\)
\(234\) 0 0
\(235\) −13.4069 23.2215i −0.874571 1.51480i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.08023 13.9954i −0.522667 0.905286i −0.999652 0.0263743i \(-0.991604\pi\)
0.476985 0.878911i \(-0.341730\pi\)
\(240\) 0 0
\(241\) 10.9735 0.706868 0.353434 0.935460i \(-0.385014\pi\)
0.353434 + 0.935460i \(0.385014\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.50423 + 18.6154i −0.0961017 + 1.18930i
\(246\) 0 0
\(247\) −24.2084 −1.54034
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.85873 0.180442 0.0902208 0.995922i \(-0.471243\pi\)
0.0902208 + 0.995922i \(0.471243\pi\)
\(252\) 0 0
\(253\) −6.39959 −0.402339
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.5875 −1.53373 −0.766864 0.641810i \(-0.778184\pi\)
−0.766864 + 0.641810i \(0.778184\pi\)
\(258\) 0 0
\(259\) −3.66893 16.2934i −0.227976 1.01242i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.957972 0.0590711 0.0295355 0.999564i \(-0.490597\pi\)
0.0295355 + 0.999564i \(0.490597\pi\)
\(264\) 0 0
\(265\) −3.94394 6.83111i −0.242274 0.419632i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.31005 14.3934i −0.506673 0.877583i −0.999970 0.00772245i \(-0.997542\pi\)
0.493297 0.869861i \(-0.335791\pi\)
\(270\) 0 0
\(271\) −7.21801 + 12.5020i −0.438463 + 0.759440i −0.997571 0.0696545i \(-0.977810\pi\)
0.559108 + 0.829095i \(0.311144\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.89048 0.174302
\(276\) 0 0
\(277\) −4.46642 −0.268361 −0.134181 0.990957i \(-0.542840\pi\)
−0.134181 + 0.990957i \(0.542840\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.62617 + 4.54867i −0.156664 + 0.271351i −0.933664 0.358151i \(-0.883407\pi\)
0.776999 + 0.629501i \(0.216741\pi\)
\(282\) 0 0
\(283\) 5.65751 9.79909i 0.336304 0.582495i −0.647431 0.762124i \(-0.724156\pi\)
0.983734 + 0.179629i \(0.0574898\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.00658 + 2.18363i 0.413585 + 0.128896i
\(288\) 0 0
\(289\) 5.42826 9.40201i 0.319309 0.553060i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.38422 + 9.32574i 0.314549 + 0.544815i 0.979342 0.202213i \(-0.0648133\pi\)
−0.664792 + 0.747028i \(0.731480\pi\)
\(294\) 0 0
\(295\) 4.74397 8.21679i 0.276204 0.478400i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.9255 + 22.3877i 0.747503 + 1.29471i
\(300\) 0 0
\(301\) 5.67135 + 25.1860i 0.326891 + 1.45170i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.76901 + 3.06402i 0.101293 + 0.175445i
\(306\) 0 0
\(307\) −9.42151 −0.537714 −0.268857 0.963180i \(-0.586646\pi\)
−0.268857 + 0.963180i \(0.586646\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.65754 9.79914i 0.320809 0.555658i −0.659846 0.751401i \(-0.729378\pi\)
0.980655 + 0.195743i \(0.0627118\pi\)
\(312\) 0 0
\(313\) −10.8431 18.7808i −0.612889 1.06156i −0.990751 0.135693i \(-0.956674\pi\)
0.377862 0.925862i \(-0.376660\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.6087 21.8389i −0.708174 1.22659i −0.965534 0.260278i \(-0.916186\pi\)
0.257360 0.966316i \(-0.417147\pi\)
\(318\) 0 0
\(319\) −4.02272 + 6.96755i −0.225229 + 0.390108i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.8860 0.605715
\(324\) 0 0
\(325\) −5.83802 10.1118i −0.323835 0.560899i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −25.3858 7.91160i −1.39956 0.436180i
\(330\) 0 0
\(331\) −8.51226 14.7437i −0.467876 0.810386i 0.531450 0.847090i \(-0.321647\pi\)
−0.999326 + 0.0367042i \(0.988314\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0706 + 19.1748i −0.604851 + 1.04763i
\(336\) 0 0
\(337\) 6.85166 + 11.8674i 0.373233 + 0.646459i 0.990061 0.140639i \(-0.0449157\pi\)
−0.616827 + 0.787098i \(0.711582\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.12644 3.68310i 0.115153 0.199451i
\(342\) 0 0
\(343\) 11.4201 + 14.5802i 0.616628 + 0.787254i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.2183 + 21.1627i −0.655912 + 1.13607i 0.325752 + 0.945455i \(0.394382\pi\)
−0.981664 + 0.190618i \(0.938951\pi\)
\(348\) 0 0
\(349\) 11.4881 19.8979i 0.614943 1.06511i −0.375451 0.926842i \(-0.622512\pi\)
0.990394 0.138271i \(-0.0441544\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.0305 −1.27901 −0.639507 0.768785i \(-0.720861\pi\)
−0.639507 + 0.768785i \(0.720861\pi\)
\(354\) 0 0
\(355\) −32.8350 −1.74270
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.84234 + 17.0474i −0.519459 + 0.899729i 0.480285 + 0.877112i \(0.340533\pi\)
−0.999744 + 0.0226169i \(0.992800\pi\)
\(360\) 0 0
\(361\) −0.144819 0.250833i −0.00762204 0.0132018i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.97690 + 5.15613i 0.155818 + 0.269884i
\(366\) 0 0
\(367\) 14.2006 0.741263 0.370632 0.928780i \(-0.379141\pi\)
0.370632 + 0.928780i \(0.379141\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.46779 2.32737i −0.387708 0.120831i
\(372\) 0 0
\(373\) −28.4669 −1.47396 −0.736980 0.675914i \(-0.763749\pi\)
−0.736980 + 0.675914i \(0.763749\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 32.4994 1.67381
\(378\) 0 0
\(379\) 4.25098 0.218358 0.109179 0.994022i \(-0.465178\pi\)
0.109179 + 0.994022i \(0.465178\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.8428 −1.83148 −0.915740 0.401772i \(-0.868395\pi\)
−0.915740 + 0.401772i \(0.868395\pi\)
\(384\) 0 0
\(385\) 7.07981 6.53080i 0.360820 0.332840i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.7944 1.61204 0.806020 0.591888i \(-0.201617\pi\)
0.806020 + 0.591888i \(0.201617\pi\)
\(390\) 0 0
\(391\) −5.81235 10.0673i −0.293943 0.509125i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −17.1163 29.6462i −0.861213 1.49166i
\(396\) 0 0
\(397\) 3.07669 5.32899i 0.154415 0.267454i −0.778431 0.627730i \(-0.783984\pi\)
0.932846 + 0.360276i \(0.117317\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.8229 0.740222 0.370111 0.928988i \(-0.379320\pi\)
0.370111 + 0.928988i \(0.379320\pi\)
\(402\) 0 0
\(403\) −17.1795 −0.855770
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.30677 + 7.45954i −0.213479 + 0.369756i
\(408\) 0 0
\(409\) −10.7222 + 18.5713i −0.530177 + 0.918293i 0.469203 + 0.883090i \(0.344541\pi\)
−0.999380 + 0.0352032i \(0.988792\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.06689 9.17892i −0.101705 0.451665i
\(414\) 0 0
\(415\) −13.7652 + 23.8421i −0.675708 + 1.17036i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.2332 + 22.9205i 0.646483 + 1.11974i 0.983957 + 0.178406i \(0.0570942\pi\)
−0.337474 + 0.941335i \(0.609572\pi\)
\(420\) 0 0
\(421\) −8.54824 + 14.8060i −0.416616 + 0.721600i −0.995597 0.0937415i \(-0.970117\pi\)
0.578981 + 0.815341i \(0.303451\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.62524 + 4.54705i 0.127343 + 0.220564i
\(426\) 0 0
\(427\) 3.34959 + 1.04392i 0.162098 + 0.0505186i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0292 20.8352i −0.579425 1.00359i −0.995545 0.0942846i \(-0.969944\pi\)
0.416120 0.909310i \(-0.363390\pi\)
\(432\) 0 0
\(433\) −6.58345 −0.316380 −0.158190 0.987409i \(-0.550566\pi\)
−0.158190 + 0.987409i \(0.550566\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2993 + 17.8389i −0.492681 + 0.853348i
\(438\) 0 0
\(439\) 10.6327 + 18.4164i 0.507472 + 0.878967i 0.999963 + 0.00864927i \(0.00275318\pi\)
−0.492491 + 0.870318i \(0.663913\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.471724 + 0.817050i 0.0224123 + 0.0388192i 0.877014 0.480465i \(-0.159532\pi\)
−0.854602 + 0.519284i \(0.826199\pi\)
\(444\) 0 0
\(445\) 20.6280 35.7288i 0.977862 1.69371i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.7959 0.839842 0.419921 0.907561i \(-0.362058\pi\)
0.419921 + 0.907561i \(0.362058\pi\)
\(450\) 0 0
\(451\) −1.89249 3.27789i −0.0891139 0.154350i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −37.1461 11.5768i −1.74144 0.542727i
\(456\) 0 0
\(457\) 6.88851 + 11.9313i 0.322231 + 0.558120i 0.980948 0.194270i \(-0.0622339\pi\)
−0.658717 + 0.752391i \(0.728901\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.97576 5.15417i 0.138595 0.240054i −0.788370 0.615201i \(-0.789075\pi\)
0.926965 + 0.375148i \(0.122408\pi\)
\(462\) 0 0
\(463\) 17.7618 + 30.7644i 0.825463 + 1.42974i 0.901565 + 0.432643i \(0.142419\pi\)
−0.0761023 + 0.997100i \(0.524248\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.2574 21.2305i 0.567207 0.982431i −0.429634 0.903003i \(-0.641357\pi\)
0.996841 0.0794277i \(-0.0253093\pi\)
\(468\) 0 0
\(469\) 4.82333 + 21.4200i 0.222721 + 0.989086i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.65731 11.5308i 0.306103 0.530187i
\(474\) 0 0
\(475\) 4.65183 8.05720i 0.213440 0.369690i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.2352 0.878878 0.439439 0.898272i \(-0.355177\pi\)
0.439439 + 0.898272i \(0.355177\pi\)
\(480\) 0 0
\(481\) 34.7943 1.58648
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.81328 11.8009i 0.309375 0.535853i
\(486\) 0 0
\(487\) −12.3089 21.3197i −0.557770 0.966086i −0.997682 0.0680455i \(-0.978324\pi\)
0.439912 0.898041i \(-0.355010\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.73086 + 16.8543i 0.439147 + 0.760626i 0.997624 0.0688947i \(-0.0219472\pi\)
−0.558476 + 0.829520i \(0.688614\pi\)
\(492\) 0 0
\(493\) −14.6143 −0.658197
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.9333 + 22.0774i −1.07356 + 0.990306i
\(498\) 0 0
\(499\) 7.17781 0.321323 0.160661 0.987010i \(-0.448637\pi\)
0.160661 + 0.987010i \(0.448637\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.1112 0.985889 0.492945 0.870061i \(-0.335921\pi\)
0.492945 + 0.870061i \(0.335921\pi\)
\(504\) 0 0
\(505\) −7.19021 −0.319960
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.3575 1.38989 0.694947 0.719061i \(-0.255428\pi\)
0.694947 + 0.719061i \(0.255428\pi\)
\(510\) 0 0
\(511\) 5.63670 + 1.75670i 0.249353 + 0.0777120i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −34.7414 −1.53089
\(516\) 0 0
\(517\) 6.85675 + 11.8762i 0.301559 + 0.522316i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.76588 3.05859i −0.0773645 0.133999i 0.824748 0.565501i \(-0.191317\pi\)
−0.902112 + 0.431502i \(0.857984\pi\)
\(522\) 0 0
\(523\) 7.03821 12.1905i 0.307759 0.533055i −0.670113 0.742259i \(-0.733754\pi\)
0.977872 + 0.209205i \(0.0670875\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.72526 0.336518
\(528\) 0 0
\(529\) −1.00374 −0.0436409
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.64469 + 13.2410i −0.331128 + 0.573531i
\(534\) 0 0
\(535\) 3.99543 6.92029i 0.172737 0.299190i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.769313 9.52056i 0.0331367 0.410080i
\(540\) 0 0
\(541\) 11.5799 20.0569i 0.497858 0.862315i −0.502139 0.864787i \(-0.667454\pi\)
0.999997 + 0.00247207i \(0.000786884\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.7155 46.2725i −1.14436 1.98210i
\(546\) 0 0
\(547\) 5.76832 9.99102i 0.246635 0.427185i −0.715955 0.698147i \(-0.754008\pi\)
0.962590 + 0.270962i \(0.0873417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.9480 + 22.4266i 0.551605 + 0.955407i
\(552\) 0 0
\(553\) −32.4094 10.1005i −1.37819 0.429518i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.04108 + 1.80321i 0.0441122 + 0.0764045i 0.887238 0.461311i \(-0.152621\pi\)
−0.843126 + 0.537716i \(0.819287\pi\)
\(558\) 0 0
\(559\) −53.7842 −2.27483
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.35403 5.80936i 0.141356 0.244835i −0.786652 0.617397i \(-0.788187\pi\)
0.928007 + 0.372562i \(0.121521\pi\)
\(564\) 0 0
\(565\) −16.6274 28.7995i −0.699519 1.21160i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.01112 6.94746i −0.168155 0.291253i 0.769616 0.638507i \(-0.220447\pi\)
−0.937771 + 0.347254i \(0.887114\pi\)
\(570\) 0 0
\(571\) 3.34215 5.78877i 0.139865 0.242253i −0.787581 0.616212i \(-0.788667\pi\)
0.927445 + 0.373959i \(0.122000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.93496 −0.414316
\(576\) 0 0
\(577\) −14.0088 24.2639i −0.583193 1.01012i −0.995098 0.0988925i \(-0.968470\pi\)
0.411906 0.911227i \(-0.364863\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.99736 + 26.6338i 0.248812 + 1.10496i
\(582\) 0 0
\(583\) 2.01706 + 3.49366i 0.0835382 + 0.144692i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.35952 + 5.81886i −0.138662 + 0.240170i −0.926990 0.375085i \(-0.877614\pi\)
0.788328 + 0.615255i \(0.210947\pi\)
\(588\) 0 0
\(589\) −6.84443 11.8549i −0.282020 0.488473i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.19462 5.53325i 0.131187 0.227223i −0.792947 0.609290i \(-0.791454\pi\)
0.924135 + 0.382067i \(0.124788\pi\)
\(594\) 0 0
\(595\) 16.7038 + 5.20583i 0.684791 + 0.213418i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.96098 5.12856i 0.120982 0.209547i −0.799173 0.601101i \(-0.794729\pi\)
0.920155 + 0.391554i \(0.128062\pi\)
\(600\) 0 0
\(601\) −1.97104 + 3.41393i −0.0804002 + 0.139257i −0.903422 0.428753i \(-0.858953\pi\)
0.823022 + 0.568010i \(0.192287\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.3806 0.991213
\(606\) 0 0
\(607\) 7.09551 0.287998 0.143999 0.989578i \(-0.454004\pi\)
0.143999 + 0.989578i \(0.454004\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.6978 47.9739i 1.12053 1.94082i
\(612\) 0 0
\(613\) 6.87000 + 11.8992i 0.277477 + 0.480604i 0.970757 0.240064i \(-0.0771685\pi\)
−0.693280 + 0.720668i \(0.743835\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.3605 + 28.3372i 0.658649 + 1.14081i 0.980966 + 0.194182i \(0.0622051\pi\)
−0.322317 + 0.946632i \(0.604462\pi\)
\(618\) 0 0
\(619\) −22.6180 −0.909094 −0.454547 0.890723i \(-0.650199\pi\)
−0.454547 + 0.890723i \(0.650199\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.98740 39.9124i −0.360073 1.59905i
\(624\) 0 0
\(625\) −31.1043 −1.24417
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.6463 −0.623858
\(630\) 0 0
\(631\) 43.9355 1.74905 0.874523 0.484984i \(-0.161175\pi\)
0.874523 + 0.484984i \(0.161175\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 40.2160 1.59592
\(636\) 0 0
\(637\) −34.8596 + 16.5378i −1.38119 + 0.655252i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −39.8595 −1.57436 −0.787178 0.616726i \(-0.788459\pi\)
−0.787178 + 0.616726i \(0.788459\pi\)
\(642\) 0 0
\(643\) −9.24049 16.0050i −0.364410 0.631176i 0.624272 0.781207i \(-0.285396\pi\)
−0.988681 + 0.150032i \(0.952062\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.76068 + 15.1739i 0.344418 + 0.596549i 0.985248 0.171134i \(-0.0547430\pi\)
−0.640830 + 0.767683i \(0.721410\pi\)
\(648\) 0 0
\(649\) −2.42622 + 4.20234i −0.0952376 + 0.164956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −27.4055 −1.07246 −0.536230 0.844072i \(-0.680152\pi\)
−0.536230 + 0.844072i \(0.680152\pi\)
\(654\) 0 0
\(655\) −39.5951 −1.54711
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.2580 + 28.1597i −0.633322 + 1.09695i 0.353546 + 0.935417i \(0.384976\pi\)
−0.986868 + 0.161529i \(0.948358\pi\)
\(660\) 0 0
\(661\) −19.4336 + 33.6599i −0.755878 + 1.30922i 0.189059 + 0.981966i \(0.439456\pi\)
−0.944937 + 0.327253i \(0.893877\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.81061 30.2454i −0.264104 1.17287i
\(666\) 0 0
\(667\) 13.8266 23.9484i 0.535369 0.927286i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.904731 1.56704i −0.0349268 0.0604949i
\(672\) 0 0
\(673\) −4.50978 + 7.81117i −0.173839 + 0.301099i −0.939759 0.341838i \(-0.888951\pi\)
0.765920 + 0.642936i \(0.222284\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.41435 + 16.3061i 0.361823 + 0.626695i 0.988261 0.152776i \(-0.0488212\pi\)
−0.626438 + 0.779471i \(0.715488\pi\)
\(678\) 0 0
\(679\) −2.96847 13.1827i −0.113919 0.505907i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.35476 + 9.27471i 0.204894 + 0.354887i 0.950099 0.311949i \(-0.100982\pi\)
−0.745205 + 0.666836i \(0.767648\pi\)
\(684\) 0 0
\(685\) −53.7763 −2.05468
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.14791 14.1126i 0.310411 0.537647i
\(690\) 0 0
\(691\) 2.52277 + 4.36956i 0.0959705 + 0.166226i 0.910013 0.414579i \(-0.136071\pi\)
−0.814043 + 0.580805i \(0.802738\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −26.4548 45.8210i −1.00349 1.73809i
\(696\) 0 0
\(697\) 3.43766 5.95421i 0.130211 0.225532i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −44.9138 −1.69637 −0.848186 0.529698i \(-0.822305\pi\)
−0.848186 + 0.529698i \(0.822305\pi\)
\(702\) 0 0
\(703\) 13.8623 + 24.0102i 0.522827 + 0.905563i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.24092 + 4.83451i −0.197105 + 0.181820i
\(708\) 0 0
\(709\) −3.72658 6.45463i −0.139955 0.242409i 0.787524 0.616283i \(-0.211362\pi\)
−0.927479 + 0.373875i \(0.878029\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.30887 + 12.6593i −0.273719 + 0.474096i
\(714\) 0 0
\(715\) 10.0332 + 17.3781i 0.375222 + 0.649903i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.5574 37.3385i 0.803954 1.39249i −0.113040 0.993590i \(-0.536059\pi\)
0.916995 0.398899i \(-0.130608\pi\)
\(720\) 0 0
\(721\) −25.3229 + 23.3592i −0.943074 + 0.869943i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.24501 + 10.8167i −0.231934 + 0.401721i
\(726\) 0 0
\(727\) 0.389926 0.675372i 0.0144616 0.0250482i −0.858704 0.512472i \(-0.828730\pi\)
0.873166 + 0.487424i \(0.162063\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 24.1857 0.894540
\(732\) 0 0
\(733\) −15.6772 −0.579050 −0.289525 0.957170i \(-0.593497\pi\)
−0.289525 + 0.957170i \(0.593497\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.66187 9.80664i 0.208558 0.361232i
\(738\) 0 0
\(739\) −8.87450 15.3711i −0.326454 0.565434i 0.655352 0.755324i \(-0.272520\pi\)
−0.981805 + 0.189889i \(0.939187\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.74308 6.48321i −0.137320 0.237846i 0.789161 0.614186i \(-0.210516\pi\)
−0.926481 + 0.376340i \(0.877182\pi\)
\(744\) 0 0
\(745\) 46.1656 1.69138
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.74076 7.73060i −0.0636062 0.282470i
\(750\) 0 0
\(751\) −23.3599 −0.852415 −0.426208 0.904625i \(-0.640151\pi\)
−0.426208 + 0.904625i \(0.640151\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.6447 −0.387402
\(756\) 0 0
\(757\) 31.2350 1.13525 0.567627 0.823286i \(-0.307862\pi\)
0.567627 + 0.823286i \(0.307862\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16.6147 −0.602282 −0.301141 0.953580i \(-0.597367\pi\)
−0.301141 + 0.953580i \(0.597367\pi\)
\(762\) 0 0
\(763\) −50.5853 15.7651i −1.83131 0.570736i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.6014 0.707766
\(768\) 0 0
\(769\) 18.3794 + 31.8340i 0.662777 + 1.14796i 0.979883 + 0.199573i \(0.0639556\pi\)
−0.317106 + 0.948390i \(0.602711\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.77690 8.27382i −0.171813 0.297589i 0.767241 0.641359i \(-0.221629\pi\)
−0.939054 + 0.343770i \(0.888296\pi\)
\(774\) 0 0
\(775\) 3.30116 5.71778i 0.118581 0.205389i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.1828 −0.436495
\(780\) 0 0
\(781\) 16.7929 0.600897
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −32.2814 + 55.9130i −1.15217 + 1.99562i
\(786\) 0 0
\(787\) −10.1339 + 17.5524i −0.361233 + 0.625674i −0.988164 0.153401i \(-0.950977\pi\)
0.626931 + 0.779075i \(0.284311\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −31.4837 9.81203i −1.11943 0.348876i
\(792\) 0 0
\(793\) −3.65465 + 6.33004i −0.129780 + 0.224786i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.4236 37.1068i −0.758863 1.31439i −0.943431 0.331570i \(-0.892422\pi\)
0.184567 0.982820i \(-0.440912\pi\)
\(798\) 0 0
\(799\) −12.4551 + 21.5729i −0.440630 + 0.763194i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.52248 2.63702i −0.0537273 0.0930584i
\(804\) 0 0
\(805\) −24.3343 + 22.4472i −0.857670 + 0.791161i
\(806\) 0 0