Properties

Label 3024.2.t.l.289.10
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.10
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.10

$q$-expansion

\(f(q)\) \(=\) \(q+3.43592 q^{5} +(1.83889 - 1.90223i) q^{7} +O(q^{10})\) \(q+3.43592 q^{5} +(1.83889 - 1.90223i) q^{7} +4.40938 q^{11} +(1.49401 + 2.58771i) q^{13} +(-0.542270 - 0.939239i) q^{17} +(3.74273 - 6.48261i) q^{19} -4.32558 q^{23} +6.80552 q^{25} +(-1.68485 + 2.91825i) q^{29} +(4.68734 - 8.11872i) q^{31} +(6.31828 - 6.53590i) q^{35} +(-2.50767 + 4.34341i) q^{37} +(1.20160 + 2.08122i) q^{41} +(-3.31412 + 5.74023i) q^{43} +(-1.50415 - 2.60527i) q^{47} +(-0.236948 - 6.99599i) q^{49} +(0.530699 + 0.919198i) q^{53} +15.1502 q^{55} +(-6.20470 + 10.7468i) q^{59} +(2.71334 + 4.69965i) q^{61} +(5.13331 + 8.89115i) q^{65} +(1.66999 - 2.89251i) q^{67} -12.9064 q^{71} +(-8.21382 - 14.2267i) q^{73} +(8.10837 - 8.38764i) q^{77} +(-1.17516 - 2.03543i) q^{79} +(-1.60602 + 2.78171i) q^{83} +(-1.86319 - 3.22715i) q^{85} +(-5.67524 + 9.82981i) q^{89} +(7.66974 + 1.91656i) q^{91} +(12.8597 - 22.2737i) q^{95} +(-6.40321 + 11.0907i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.43592 1.53659 0.768294 0.640097i \(-0.221106\pi\)
0.768294 + 0.640097i \(0.221106\pi\)
\(6\) 0 0
\(7\) 1.83889 1.90223i 0.695036 0.718975i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.40938 1.32948 0.664739 0.747076i \(-0.268543\pi\)
0.664739 + 0.747076i \(0.268543\pi\)
\(12\) 0 0
\(13\) 1.49401 + 2.58771i 0.414365 + 0.717701i 0.995362 0.0962048i \(-0.0306704\pi\)
−0.580997 + 0.813906i \(0.697337\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.542270 0.939239i −0.131520 0.227799i 0.792743 0.609556i \(-0.208652\pi\)
−0.924263 + 0.381757i \(0.875319\pi\)
\(18\) 0 0
\(19\) 3.74273 6.48261i 0.858642 1.48721i −0.0145824 0.999894i \(-0.504642\pi\)
0.873225 0.487318i \(-0.162025\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.32558 −0.901945 −0.450972 0.892538i \(-0.648923\pi\)
−0.450972 + 0.892538i \(0.648923\pi\)
\(24\) 0 0
\(25\) 6.80552 1.36110
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.68485 + 2.91825i −0.312870 + 0.541906i −0.978982 0.203945i \(-0.934624\pi\)
0.666113 + 0.745851i \(0.267957\pi\)
\(30\) 0 0
\(31\) 4.68734 8.11872i 0.841872 1.45816i −0.0464389 0.998921i \(-0.514787\pi\)
0.888311 0.459243i \(-0.151879\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.31828 6.53590i 1.06798 1.10477i
\(36\) 0 0
\(37\) −2.50767 + 4.34341i −0.412258 + 0.714052i −0.995136 0.0985079i \(-0.968593\pi\)
0.582878 + 0.812559i \(0.301926\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.20160 + 2.08122i 0.187658 + 0.325033i 0.944469 0.328601i \(-0.106577\pi\)
−0.756811 + 0.653634i \(0.773244\pi\)
\(42\) 0 0
\(43\) −3.31412 + 5.74023i −0.505399 + 0.875377i 0.494581 + 0.869131i \(0.335321\pi\)
−0.999980 + 0.00624563i \(0.998012\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.50415 2.60527i −0.219403 0.380018i 0.735222 0.677826i \(-0.237078\pi\)
−0.954626 + 0.297808i \(0.903744\pi\)
\(48\) 0 0
\(49\) −0.236948 6.99599i −0.0338498 0.999427i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.530699 + 0.919198i 0.0728971 + 0.126262i 0.900170 0.435539i \(-0.143442\pi\)
−0.827273 + 0.561801i \(0.810109\pi\)
\(54\) 0 0
\(55\) 15.1502 2.04286
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.20470 + 10.7468i −0.807783 + 1.39912i 0.106614 + 0.994301i \(0.465999\pi\)
−0.914396 + 0.404820i \(0.867334\pi\)
\(60\) 0 0
\(61\) 2.71334 + 4.69965i 0.347408 + 0.601728i 0.985788 0.167993i \(-0.0537286\pi\)
−0.638380 + 0.769721i \(0.720395\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.13331 + 8.89115i 0.636708 + 1.10281i
\(66\) 0 0
\(67\) 1.66999 2.89251i 0.204022 0.353376i −0.745799 0.666171i \(-0.767932\pi\)
0.949821 + 0.312795i \(0.101265\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.9064 −1.53171 −0.765857 0.643011i \(-0.777685\pi\)
−0.765857 + 0.643011i \(0.777685\pi\)
\(72\) 0 0
\(73\) −8.21382 14.2267i −0.961355 1.66511i −0.719106 0.694901i \(-0.755448\pi\)
−0.242249 0.970214i \(-0.577885\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.10837 8.38764i 0.924035 0.955861i
\(78\) 0 0
\(79\) −1.17516 2.03543i −0.132216 0.229004i 0.792315 0.610113i \(-0.208876\pi\)
−0.924530 + 0.381108i \(0.875542\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.60602 + 2.78171i −0.176283 + 0.305332i −0.940605 0.339504i \(-0.889741\pi\)
0.764321 + 0.644836i \(0.223074\pi\)
\(84\) 0 0
\(85\) −1.86319 3.22715i −0.202092 0.350033i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.67524 + 9.82981i −0.601575 + 1.04196i 0.391008 + 0.920387i \(0.372126\pi\)
−0.992583 + 0.121570i \(0.961207\pi\)
\(90\) 0 0
\(91\) 7.66974 + 1.91656i 0.804008 + 0.200910i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.8597 22.2737i 1.31938 2.28523i
\(96\) 0 0
\(97\) −6.40321 + 11.0907i −0.650148 + 1.12609i 0.332939 + 0.942948i \(0.391960\pi\)
−0.983087 + 0.183140i \(0.941374\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.776221 0.0772369 0.0386184 0.999254i \(-0.487704\pi\)
0.0386184 + 0.999254i \(0.487704\pi\)
\(102\) 0 0
\(103\) −2.28262 −0.224913 −0.112457 0.993657i \(-0.535872\pi\)
−0.112457 + 0.993657i \(0.535872\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.27468 + 3.93986i −0.219901 + 0.380880i −0.954778 0.297321i \(-0.903907\pi\)
0.734876 + 0.678201i \(0.237240\pi\)
\(108\) 0 0
\(109\) 2.36710 + 4.09994i 0.226727 + 0.392703i 0.956836 0.290627i \(-0.0938640\pi\)
−0.730109 + 0.683331i \(0.760531\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.175367 0.303745i −0.0164972 0.0285740i 0.857659 0.514219i \(-0.171918\pi\)
−0.874156 + 0.485645i \(0.838585\pi\)
\(114\) 0 0
\(115\) −14.8623 −1.38592
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.78382 0.695638i −0.255193 0.0637691i
\(120\) 0 0
\(121\) 8.44261 0.767510
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.20360 0.554867
\(126\) 0 0
\(127\) −12.4175 −1.10187 −0.550935 0.834548i \(-0.685729\pi\)
−0.550935 + 0.834548i \(0.685729\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.7430 1.37548 0.687738 0.725959i \(-0.258604\pi\)
0.687738 + 0.725959i \(0.258604\pi\)
\(132\) 0 0
\(133\) −5.44891 19.0404i −0.472481 1.65101i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.23020 0.361410 0.180705 0.983537i \(-0.442162\pi\)
0.180705 + 0.983537i \(0.442162\pi\)
\(138\) 0 0
\(139\) −9.80367 16.9805i −0.831537 1.44026i −0.896819 0.442397i \(-0.854128\pi\)
0.0652824 0.997867i \(-0.479205\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.58767 + 11.4102i 0.550889 + 0.954167i
\(144\) 0 0
\(145\) −5.78902 + 10.0269i −0.480752 + 0.832686i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.72651 0.796827 0.398414 0.917206i \(-0.369561\pi\)
0.398414 + 0.917206i \(0.369561\pi\)
\(150\) 0 0
\(151\) 9.82148 0.799261 0.399630 0.916676i \(-0.369138\pi\)
0.399630 + 0.916676i \(0.369138\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.1053 27.8952i 1.29361 2.24060i
\(156\) 0 0
\(157\) 6.02041 10.4277i 0.480481 0.832218i −0.519268 0.854611i \(-0.673795\pi\)
0.999749 + 0.0223936i \(0.00712870\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.95427 + 8.22824i −0.626884 + 0.648476i
\(162\) 0 0
\(163\) −0.885601 + 1.53391i −0.0693656 + 0.120145i −0.898622 0.438723i \(-0.855431\pi\)
0.829257 + 0.558868i \(0.188764\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.86350 13.6200i −0.608496 1.05395i −0.991489 0.130194i \(-0.958440\pi\)
0.382993 0.923751i \(-0.374893\pi\)
\(168\) 0 0
\(169\) 2.03584 3.52618i 0.156603 0.271245i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.40313 + 16.2867i 0.714907 + 1.23825i 0.962996 + 0.269517i \(0.0868642\pi\)
−0.248089 + 0.968737i \(0.579802\pi\)
\(174\) 0 0
\(175\) 12.5146 12.9456i 0.946016 0.978599i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.34201 + 5.78853i 0.249794 + 0.432655i 0.963468 0.267822i \(-0.0863039\pi\)
−0.713675 + 0.700477i \(0.752971\pi\)
\(180\) 0 0
\(181\) 4.73726 0.352117 0.176059 0.984380i \(-0.443665\pi\)
0.176059 + 0.984380i \(0.443665\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.61613 + 14.9236i −0.633471 + 1.09720i
\(186\) 0 0
\(187\) −2.39107 4.14146i −0.174853 0.302853i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.5347 + 19.9786i 0.834618 + 1.44560i 0.894341 + 0.447386i \(0.147645\pi\)
−0.0597224 + 0.998215i \(0.519022\pi\)
\(192\) 0 0
\(193\) −9.15352 + 15.8544i −0.658885 + 1.14122i 0.322020 + 0.946733i \(0.395638\pi\)
−0.980905 + 0.194489i \(0.937695\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.5866 −1.03925 −0.519625 0.854395i \(-0.673928\pi\)
−0.519625 + 0.854395i \(0.673928\pi\)
\(198\) 0 0
\(199\) 0.912102 + 1.57981i 0.0646572 + 0.111990i 0.896542 0.442959i \(-0.146071\pi\)
−0.831885 + 0.554949i \(0.812738\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.45292 + 8.57133i 0.172161 + 0.601590i
\(204\) 0 0
\(205\) 4.12858 + 7.15091i 0.288352 + 0.499441i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.5031 28.5843i 1.14155 1.97721i
\(210\) 0 0
\(211\) 2.77359 + 4.80400i 0.190942 + 0.330721i 0.945563 0.325440i \(-0.105512\pi\)
−0.754621 + 0.656161i \(0.772179\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.3870 + 19.7229i −0.776590 + 1.34509i
\(216\) 0 0
\(217\) −6.82413 23.8458i −0.463252 1.61876i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.62032 2.80647i 0.108994 0.188784i
\(222\) 0 0
\(223\) −6.01726 + 10.4222i −0.402946 + 0.697922i −0.994080 0.108651i \(-0.965347\pi\)
0.591134 + 0.806573i \(0.298680\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.1567 −0.873240 −0.436620 0.899646i \(-0.643825\pi\)
−0.436620 + 0.899646i \(0.643825\pi\)
\(228\) 0 0
\(229\) 12.4832 0.824912 0.412456 0.910978i \(-0.364671\pi\)
0.412456 + 0.910978i \(0.364671\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.01687 3.49332i 0.132130 0.228855i −0.792368 0.610044i \(-0.791152\pi\)
0.924497 + 0.381189i \(0.124485\pi\)
\(234\) 0 0
\(235\) −5.16814 8.95149i −0.337133 0.583931i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.8679 + 24.0200i 0.897043 + 1.55372i 0.831256 + 0.555890i \(0.187623\pi\)
0.0657873 + 0.997834i \(0.479044\pi\)
\(240\) 0 0
\(241\) 23.9134 1.54040 0.770199 0.637803i \(-0.220157\pi\)
0.770199 + 0.637803i \(0.220157\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.814135 24.0376i −0.0520131 1.53571i
\(246\) 0 0
\(247\) 22.3668 1.42316
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.33510 −0.210509 −0.105255 0.994445i \(-0.533566\pi\)
−0.105255 + 0.994445i \(0.533566\pi\)
\(252\) 0 0
\(253\) −19.0731 −1.19912
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.8691 1.36416 0.682078 0.731280i \(-0.261077\pi\)
0.682078 + 0.731280i \(0.261077\pi\)
\(258\) 0 0
\(259\) 3.65082 + 12.7572i 0.226851 + 0.792695i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.51044 0.339788 0.169894 0.985462i \(-0.445657\pi\)
0.169894 + 0.985462i \(0.445657\pi\)
\(264\) 0 0
\(265\) 1.82344 + 3.15829i 0.112013 + 0.194012i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.37393 5.84382i −0.205712 0.356304i 0.744647 0.667458i \(-0.232618\pi\)
−0.950359 + 0.311154i \(0.899284\pi\)
\(270\) 0 0
\(271\) −6.21944 + 10.7724i −0.377804 + 0.654376i −0.990742 0.135755i \(-0.956654\pi\)
0.612938 + 0.790131i \(0.289987\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 30.0081 1.80956
\(276\) 0 0
\(277\) −9.71890 −0.583952 −0.291976 0.956426i \(-0.594313\pi\)
−0.291976 + 0.956426i \(0.594313\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.66772 16.7450i 0.576728 0.998922i −0.419124 0.907929i \(-0.637663\pi\)
0.995852 0.0909928i \(-0.0290040\pi\)
\(282\) 0 0
\(283\) 4.15450 7.19581i 0.246959 0.427746i −0.715721 0.698386i \(-0.753902\pi\)
0.962681 + 0.270640i \(0.0872352\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.16857 + 1.54144i 0.364119 + 0.0909882i
\(288\) 0 0
\(289\) 7.91189 13.7038i 0.465405 0.806105i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.97318 + 6.88175i 0.232116 + 0.402036i 0.958430 0.285326i \(-0.0921019\pi\)
−0.726315 + 0.687362i \(0.758769\pi\)
\(294\) 0 0
\(295\) −21.3188 + 36.9253i −1.24123 + 2.14987i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.46247 11.1933i −0.373734 0.647327i
\(300\) 0 0
\(301\) 4.82491 + 16.8599i 0.278103 + 0.971788i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.32281 + 16.1476i 0.533823 + 0.924608i
\(306\) 0 0
\(307\) 26.9180 1.53629 0.768145 0.640276i \(-0.221180\pi\)
0.768145 + 0.640276i \(0.221180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.67458 + 8.09662i −0.265071 + 0.459117i −0.967582 0.252556i \(-0.918729\pi\)
0.702511 + 0.711673i \(0.252062\pi\)
\(312\) 0 0
\(313\) −7.91902 13.7161i −0.447610 0.775282i 0.550620 0.834756i \(-0.314391\pi\)
−0.998230 + 0.0594734i \(0.981058\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.2296 24.6463i −0.799213 1.38428i −0.920130 0.391614i \(-0.871917\pi\)
0.120917 0.992663i \(-0.461417\pi\)
\(318\) 0 0
\(319\) −7.42916 + 12.8677i −0.415953 + 0.720452i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.11829 −0.451714
\(324\) 0 0
\(325\) 10.1675 + 17.6107i 0.563994 + 0.976865i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.72180 1.92957i −0.425716 0.106381i
\(330\) 0 0
\(331\) −9.79521 16.9658i −0.538393 0.932524i −0.998991 0.0449153i \(-0.985698\pi\)
0.460598 0.887609i \(-0.347635\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.73794 9.93841i 0.313497 0.542993i
\(336\) 0 0
\(337\) 8.73059 + 15.1218i 0.475586 + 0.823739i 0.999609 0.0279654i \(-0.00890283\pi\)
−0.524023 + 0.851704i \(0.675569\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.6683 35.7985i 1.11925 1.93860i
\(342\) 0 0
\(343\) −13.7437 12.4141i −0.742090 0.670301i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.72509 16.8443i 0.522070 0.904252i −0.477600 0.878577i \(-0.658493\pi\)
0.999670 0.0256747i \(-0.00817340\pi\)
\(348\) 0 0
\(349\) 6.91419 11.9757i 0.370108 0.641046i −0.619474 0.785018i \(-0.712654\pi\)
0.989582 + 0.143971i \(0.0459872\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.8459 −0.630493 −0.315247 0.949010i \(-0.602087\pi\)
−0.315247 + 0.949010i \(0.602087\pi\)
\(354\) 0 0
\(355\) −44.3455 −2.35361
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.628489 + 1.08858i −0.0331704 + 0.0574528i −0.882134 0.470998i \(-0.843894\pi\)
0.848964 + 0.528451i \(0.177227\pi\)
\(360\) 0 0
\(361\) −18.5161 32.0709i −0.974533 1.68794i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −28.2220 48.8819i −1.47721 2.55860i
\(366\) 0 0
\(367\) 15.2386 0.795446 0.397723 0.917505i \(-0.369800\pi\)
0.397723 + 0.917505i \(0.369800\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.72442 + 0.680795i 0.141445 + 0.0353451i
\(372\) 0 0
\(373\) 17.3351 0.897579 0.448789 0.893638i \(-0.351855\pi\)
0.448789 + 0.893638i \(0.351855\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.0688 −0.518569
\(378\) 0 0
\(379\) −15.6319 −0.802955 −0.401478 0.915869i \(-0.631503\pi\)
−0.401478 + 0.915869i \(0.631503\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.8123 −0.910166 −0.455083 0.890449i \(-0.650390\pi\)
−0.455083 + 0.890449i \(0.650390\pi\)
\(384\) 0 0
\(385\) 27.8597 28.8192i 1.41986 1.46876i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.4148 −1.49139 −0.745695 0.666288i \(-0.767882\pi\)
−0.745695 + 0.666288i \(0.767882\pi\)
\(390\) 0 0
\(391\) 2.34563 + 4.06275i 0.118624 + 0.205462i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.03774 6.99357i −0.203161 0.351885i
\(396\) 0 0
\(397\) −1.55930 + 2.70079i −0.0782592 + 0.135549i −0.902499 0.430692i \(-0.858270\pi\)
0.824240 + 0.566241i \(0.191603\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.7226 1.78390 0.891950 0.452134i \(-0.149337\pi\)
0.891950 + 0.452134i \(0.149337\pi\)
\(402\) 0 0
\(403\) 28.0118 1.39537
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.0572 + 19.1517i −0.548087 + 0.949315i
\(408\) 0 0
\(409\) −4.90826 + 8.50135i −0.242698 + 0.420365i −0.961482 0.274869i \(-0.911366\pi\)
0.718784 + 0.695233i \(0.244699\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.03320 + 31.5651i 0.444494 + 1.55321i
\(414\) 0 0
\(415\) −5.51814 + 9.55771i −0.270875 + 0.469169i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.09812 + 10.5623i 0.297913 + 0.516000i 0.975658 0.219297i \(-0.0703762\pi\)
−0.677746 + 0.735297i \(0.737043\pi\)
\(420\) 0 0
\(421\) −5.10015 + 8.83373i −0.248566 + 0.430529i −0.963128 0.269043i \(-0.913293\pi\)
0.714562 + 0.699572i \(0.246626\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.69043 6.39201i −0.179012 0.310058i
\(426\) 0 0
\(427\) 13.9293 + 3.48075i 0.674088 + 0.168445i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.70254 9.87710i −0.274682 0.475763i 0.695373 0.718649i \(-0.255239\pi\)
−0.970055 + 0.242886i \(0.921906\pi\)
\(432\) 0 0
\(433\) 26.2391 1.26097 0.630486 0.776201i \(-0.282856\pi\)
0.630486 + 0.776201i \(0.282856\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.1895 + 28.0410i −0.774448 + 1.34138i
\(438\) 0 0
\(439\) 11.4777 + 19.8800i 0.547801 + 0.948819i 0.998425 + 0.0561054i \(0.0178683\pi\)
−0.450624 + 0.892714i \(0.648798\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.2013 19.4012i −0.532188 0.921777i −0.999294 0.0375758i \(-0.988036\pi\)
0.467105 0.884202i \(-0.345297\pi\)
\(444\) 0 0
\(445\) −19.4997 + 33.7744i −0.924372 + 1.60106i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.0576 −0.805000 −0.402500 0.915420i \(-0.631859\pi\)
−0.402500 + 0.915420i \(0.631859\pi\)
\(450\) 0 0
\(451\) 5.29829 + 9.17690i 0.249487 + 0.432123i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 26.3526 + 6.58514i 1.23543 + 0.308716i
\(456\) 0 0
\(457\) −4.77365 8.26820i −0.223302 0.386770i 0.732507 0.680760i \(-0.238350\pi\)
−0.955809 + 0.293990i \(0.905017\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.1213 + 17.5305i −0.471394 + 0.816478i −0.999464 0.0327222i \(-0.989582\pi\)
0.528070 + 0.849201i \(0.322916\pi\)
\(462\) 0 0
\(463\) 7.81948 + 13.5437i 0.363402 + 0.629431i 0.988518 0.151101i \(-0.0482818\pi\)
−0.625116 + 0.780532i \(0.714948\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.96638 + 5.13793i −0.137268 + 0.237755i −0.926461 0.376390i \(-0.877165\pi\)
0.789194 + 0.614144i \(0.210499\pi\)
\(468\) 0 0
\(469\) −2.43128 8.49571i −0.112266 0.392295i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.6132 + 25.3108i −0.671917 + 1.16379i
\(474\) 0 0
\(475\) 25.4712 44.1175i 1.16870 2.02425i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.3942 −0.794760 −0.397380 0.917654i \(-0.630080\pi\)
−0.397380 + 0.917654i \(0.630080\pi\)
\(480\) 0 0
\(481\) −14.9860 −0.683301
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.0009 + 38.1067i −0.999009 + 1.73033i
\(486\) 0 0
\(487\) 9.76967 + 16.9216i 0.442706 + 0.766790i 0.997889 0.0649386i \(-0.0206851\pi\)
−0.555183 + 0.831728i \(0.687352\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.16702 10.6816i −0.278314 0.482054i 0.692652 0.721272i \(-0.256442\pi\)
−0.970966 + 0.239218i \(0.923109\pi\)
\(492\) 0 0
\(493\) 3.65458 0.164594
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.7336 + 24.5510i −1.06460 + 1.10126i
\(498\) 0 0
\(499\) −18.5462 −0.830240 −0.415120 0.909767i \(-0.636260\pi\)
−0.415120 + 0.909767i \(0.636260\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.3264 −0.638782 −0.319391 0.947623i \(-0.603478\pi\)
−0.319391 + 0.947623i \(0.603478\pi\)
\(504\) 0 0
\(505\) 2.66703 0.118681
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.8611 0.747356 0.373678 0.927559i \(-0.378097\pi\)
0.373678 + 0.927559i \(0.378097\pi\)
\(510\) 0 0
\(511\) −42.1669 10.5369i −1.86535 0.466125i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.84290 −0.345599
\(516\) 0 0
\(517\) −6.63238 11.4876i −0.291692 0.505225i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.8132 18.7291i −0.473737 0.820536i 0.525811 0.850601i \(-0.323762\pi\)
−0.999548 + 0.0300652i \(0.990428\pi\)
\(522\) 0 0
\(523\) −8.27472 + 14.3322i −0.361828 + 0.626705i −0.988262 0.152770i \(-0.951181\pi\)
0.626433 + 0.779475i \(0.284514\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.1672 −0.442891
\(528\) 0 0
\(529\) −4.28939 −0.186495
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.59040 + 6.21876i −0.155517 + 0.269364i
\(534\) 0 0
\(535\) −7.81560 + 13.5370i −0.337898 + 0.585256i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.04479 30.8480i −0.0450025 1.32872i
\(540\) 0 0
\(541\) −11.9542 + 20.7053i −0.513952 + 0.890191i 0.485917 + 0.874005i \(0.338486\pi\)
−0.999869 + 0.0161861i \(0.994848\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.13317 + 14.0871i 0.348387 + 0.603423i
\(546\) 0 0
\(547\) 14.8193 25.6678i 0.633627 1.09747i −0.353177 0.935556i \(-0.614899\pi\)
0.986804 0.161918i \(-0.0517679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.6119 + 21.8445i 0.537286 + 0.930607i
\(552\) 0 0
\(553\) −6.03285 1.50752i −0.256543 0.0641064i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.8366 + 18.7695i 0.459160 + 0.795288i 0.998917 0.0465330i \(-0.0148173\pi\)
−0.539757 + 0.841821i \(0.681484\pi\)
\(558\) 0 0
\(559\) −19.8054 −0.837679
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.07782 + 12.2591i −0.298294 + 0.516661i −0.975746 0.218906i \(-0.929751\pi\)
0.677451 + 0.735567i \(0.263084\pi\)
\(564\) 0 0
\(565\) −0.602548 1.04364i −0.0253494 0.0439064i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.0178 29.4757i −0.713422 1.23568i −0.963565 0.267475i \(-0.913811\pi\)
0.250143 0.968209i \(-0.419522\pi\)
\(570\) 0 0
\(571\) −2.67485 + 4.63298i −0.111939 + 0.193884i −0.916552 0.399915i \(-0.869039\pi\)
0.804613 + 0.593800i \(0.202373\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −29.4378 −1.22764
\(576\) 0 0
\(577\) 11.1865 + 19.3756i 0.465699 + 0.806615i 0.999233 0.0391640i \(-0.0124695\pi\)
−0.533533 + 0.845779i \(0.679136\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.33814 + 8.17027i 0.0970026 + 0.338960i
\(582\) 0 0
\(583\) 2.34005 + 4.05309i 0.0969151 + 0.167862i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.49899 + 4.32839i −0.103145 + 0.178652i −0.912979 0.408007i \(-0.866224\pi\)
0.809834 + 0.586659i \(0.199557\pi\)
\(588\) 0 0
\(589\) −35.0870 60.7724i −1.44573 2.50408i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.1698 + 21.0788i −0.499755 + 0.865601i −1.00000 0.000282582i \(-0.999910\pi\)
0.500245 + 0.865884i \(0.333243\pi\)
\(594\) 0 0
\(595\) −9.56498 2.39015i −0.392126 0.0979868i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −23.1073 + 40.0230i −0.944137 + 1.63529i −0.186668 + 0.982423i \(0.559769\pi\)
−0.757469 + 0.652871i \(0.773564\pi\)
\(600\) 0 0
\(601\) −16.6163 + 28.7803i −0.677792 + 1.17397i 0.297852 + 0.954612i \(0.403730\pi\)
−0.975644 + 0.219359i \(0.929603\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.0081 1.17935
\(606\) 0 0
\(607\) −43.8635 −1.78036 −0.890182 0.455604i \(-0.849423\pi\)
−0.890182 + 0.455604i \(0.849423\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.49445 7.78462i 0.181826 0.314932i
\(612\) 0 0
\(613\) 1.81569 + 3.14487i 0.0733351 + 0.127020i 0.900361 0.435144i \(-0.143302\pi\)
−0.827026 + 0.562164i \(0.809969\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.4542 18.1073i −0.420872 0.728971i 0.575153 0.818046i \(-0.304942\pi\)
−0.996025 + 0.0890744i \(0.971609\pi\)
\(618\) 0 0
\(619\) −23.9490 −0.962592 −0.481296 0.876558i \(-0.659834\pi\)
−0.481296 + 0.876558i \(0.659834\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.26238 + 28.8716i 0.331025 + 1.15672i
\(624\) 0 0
\(625\) −12.7125 −0.508501
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.43933 0.216880
\(630\) 0 0
\(631\) 6.06918 0.241610 0.120805 0.992676i \(-0.461452\pi\)
0.120805 + 0.992676i \(0.461452\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −42.6653 −1.69312
\(636\) 0 0
\(637\) 17.7496 11.0653i 0.703264 0.438422i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.3881 0.686790 0.343395 0.939191i \(-0.388423\pi\)
0.343395 + 0.939191i \(0.388423\pi\)
\(642\) 0 0
\(643\) −9.66411 16.7387i −0.381115 0.660111i 0.610107 0.792319i \(-0.291127\pi\)
−0.991222 + 0.132208i \(0.957793\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.7041 + 22.0042i 0.499451 + 0.865075i 1.00000 0.000633482i \(-0.000201644\pi\)
−0.500549 + 0.865708i \(0.666868\pi\)
\(648\) 0 0
\(649\) −27.3588 + 47.3869i −1.07393 + 1.86010i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.8127 1.01013 0.505065 0.863081i \(-0.331468\pi\)
0.505065 + 0.863081i \(0.331468\pi\)
\(654\) 0 0
\(655\) 54.0918 2.11354
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.62598 14.9406i 0.336020 0.582004i −0.647660 0.761930i \(-0.724252\pi\)
0.983680 + 0.179925i \(0.0575856\pi\)
\(660\) 0 0
\(661\) −6.48175 + 11.2267i −0.252111 + 0.436669i −0.964107 0.265515i \(-0.914458\pi\)
0.711996 + 0.702184i \(0.247791\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.7220 65.4210i −0.726008 2.53692i
\(666\) 0 0
\(667\) 7.28797 12.6231i 0.282191 0.488769i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.9641 + 20.7225i 0.461871 + 0.799984i
\(672\) 0 0
\(673\) −20.8060 + 36.0371i −0.802013 + 1.38913i 0.116277 + 0.993217i \(0.462904\pi\)
−0.918289 + 0.395910i \(0.870429\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.0999 19.2256i −0.426605 0.738901i 0.569964 0.821669i \(-0.306957\pi\)
−0.996569 + 0.0827688i \(0.973624\pi\)
\(678\) 0 0
\(679\) 9.32221 + 32.5750i 0.357753 + 1.25011i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.60315 7.97289i −0.176135 0.305074i 0.764419 0.644720i \(-0.223026\pi\)
−0.940553 + 0.339646i \(0.889693\pi\)
\(684\) 0 0
\(685\) 14.5346 0.555338
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.58574 + 2.74659i −0.0604120 + 0.104637i
\(690\) 0 0
\(691\) −20.0293 34.6917i −0.761949 1.31974i −0.941844 0.336049i \(-0.890909\pi\)
0.179895 0.983686i \(-0.442424\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −33.6846 58.3434i −1.27773 2.21309i
\(696\) 0 0
\(697\) 1.30318 2.25717i 0.0493614 0.0854964i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.3868 −1.29877 −0.649385 0.760459i \(-0.724974\pi\)
−0.649385 + 0.760459i \(0.724974\pi\)
\(702\) 0 0
\(703\) 18.7711 + 32.5124i 0.707964 + 1.22623i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.42739 1.47655i 0.0536824 0.0555314i
\(708\) 0 0
\(709\) −10.5920 18.3459i −0.397791 0.688994i 0.595662 0.803235i \(-0.296890\pi\)
−0.993453 + 0.114241i \(0.963556\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.2755 + 35.1181i −0.759322 + 1.31518i
\(714\) 0 0
\(715\) 22.6347 + 39.2044i 0.846489 + 1.46616i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.5994 + 37.4113i −0.805523 + 1.39521i 0.110414 + 0.993886i \(0.464782\pi\)
−0.915937 + 0.401321i \(0.868551\pi\)
\(720\) 0 0
\(721\) −4.19750 + 4.34207i −0.156323 + 0.161707i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.4663 + 19.8602i −0.425848 + 0.737590i
\(726\) 0 0
\(727\) −20.5571 + 35.6059i −0.762420 + 1.32055i 0.179180 + 0.983816i \(0.442656\pi\)
−0.941600 + 0.336734i \(0.890678\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.18860 0.265880
\(732\) 0 0
\(733\) 52.0851 1.92381 0.961903 0.273390i \(-0.0881451\pi\)
0.961903 + 0.273390i \(0.0881451\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.36361 12.7541i 0.271242 0.469805i
\(738\) 0 0
\(739\) −7.18624 12.4469i −0.264350 0.457868i 0.703043 0.711147i \(-0.251824\pi\)
−0.967393 + 0.253279i \(0.918491\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.3167 36.9216i −0.782034 1.35452i −0.930755 0.365643i \(-0.880849\pi\)
0.148721 0.988879i \(-0.452484\pi\)
\(744\) 0 0
\(745\) 33.4195 1.22440
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.31162 + 11.5719i 0.121004 + 0.422829i
\(750\) 0 0
\(751\) 37.9692 1.38552 0.692758 0.721171i \(-0.256396\pi\)
0.692758 + 0.721171i \(0.256396\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.7458 1.22813
\(756\) 0 0
\(757\) 27.6692 1.00565 0.502827 0.864387i \(-0.332293\pi\)
0.502827 + 0.864387i \(0.332293\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.9442 −0.432977 −0.216488 0.976285i \(-0.569460\pi\)
−0.216488 + 0.976285i \(0.569460\pi\)
\(762\) 0 0
\(763\) 12.1519 + 3.03658i 0.439927 + 0.109932i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37.0796 −1.33887
\(768\) 0 0
\(769\) −17.4026 30.1422i −0.627554 1.08695i −0.988041 0.154191i \(-0.950723\pi\)
0.360487 0.932764i \(-0.382610\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.5014 + 23.3851i 0.485611 + 0.841103i 0.999863 0.0165363i \(-0.00526391\pi\)
−0.514253 + 0.857639i \(0.671931\pi\)
\(774\) 0 0
\(775\) 31.8998 55.2521i 1.14587 1.98471i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.9890 0.644523
\(780\) 0 0
\(781\) −56.9094 −2.03638
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.6856 35.8286i 0.738302 1.27878i
\(786\) 0 0
\(787\) 10.6420 18.4325i 0.379347 0.657048i −0.611621 0.791151i \(-0.709482\pi\)
0.990967 + 0.134104i \(0.0428155\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.900275 0.224966i −0.0320101 0.00799887i
\(792\) 0 0
\(793\) −8.10754 + 14.0427i −0.287907 + 0.498670i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.3062 + 17.8508i 0.365064 + 0.632309i 0.988786 0.149337i \(-0.0477138\pi\)
−0.623723 + 0.781646i \(0.714381\pi\)
\(798\) 0 0
\(799\) −1.63131 + 2.82552i −0.0577117 + 0.0999597i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −36.2178 62.7311i −1.27810 2.21373i
\(804\) 0 0
\(805\) −27.3302 + 28.2715i −0.963263 + 0.996440i
\(806\) 0 0