Properties

Label 3024.2.t.l.1873.7
Level $3024$
Weight $2$
Character 3024.1873
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.7
Character \(\chi\) \(=\) 3024.1873
Dual form 3024.2.t.l.289.7

$q$-expansion

\(f(q)\) \(=\) \(q+1.58188 q^{5} +(1.80922 - 1.93047i) q^{7} +O(q^{10})\) \(q+1.58188 q^{5} +(1.80922 - 1.93047i) q^{7} +5.17139 q^{11} +(-0.681985 + 1.18123i) q^{13} +(2.30781 - 3.99724i) q^{17} +(-0.0321742 - 0.0557274i) q^{19} +6.74395 q^{23} -2.49767 q^{25} +(-4.70787 - 8.15427i) q^{29} +(-1.33139 - 2.30604i) q^{31} +(2.86196 - 3.05376i) q^{35} +(0.880766 + 1.52553i) q^{37} +(0.858924 - 1.48770i) q^{41} +(5.12012 + 8.86831i) q^{43} +(-2.60417 + 4.51056i) q^{47} +(-0.453429 - 6.98530i) q^{49} +(0.479996 - 0.831377i) q^{53} +8.18049 q^{55} +(4.66676 + 8.08307i) q^{59} +(-7.19512 + 12.4623i) q^{61} +(-1.07882 + 1.86856i) q^{65} +(-6.24903 - 10.8236i) q^{67} -4.49160 q^{71} +(-0.941655 + 1.63099i) q^{73} +(9.35619 - 9.98321i) q^{77} +(3.26752 - 5.65951i) q^{79} +(-5.08661 - 8.81026i) q^{83} +(3.65066 - 6.32314i) q^{85} +(4.12369 + 7.14243i) q^{89} +(1.04647 + 3.45366i) q^{91} +(-0.0508957 - 0.0881539i) q^{95} +(-7.26638 - 12.5857i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58188 0.707436 0.353718 0.935352i \(-0.384917\pi\)
0.353718 + 0.935352i \(0.384917\pi\)
\(6\) 0 0
\(7\) 1.80922 1.93047i 0.683822 0.729649i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.17139 1.55923 0.779616 0.626258i \(-0.215414\pi\)
0.779616 + 0.626258i \(0.215414\pi\)
\(12\) 0 0
\(13\) −0.681985 + 1.18123i −0.189149 + 0.327615i −0.944967 0.327167i \(-0.893906\pi\)
0.755818 + 0.654782i \(0.227239\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.30781 3.99724i 0.559726 0.969473i −0.437794 0.899076i \(-0.644240\pi\)
0.997519 0.0703975i \(-0.0224268\pi\)
\(18\) 0 0
\(19\) −0.0321742 0.0557274i −0.00738128 0.0127847i 0.862311 0.506379i \(-0.169016\pi\)
−0.869692 + 0.493594i \(0.835683\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.74395 1.40621 0.703105 0.711086i \(-0.251796\pi\)
0.703105 + 0.711086i \(0.251796\pi\)
\(24\) 0 0
\(25\) −2.49767 −0.499534
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.70787 8.15427i −0.874229 1.51421i −0.857582 0.514348i \(-0.828034\pi\)
−0.0166475 0.999861i \(-0.505299\pi\)
\(30\) 0 0
\(31\) −1.33139 2.30604i −0.239125 0.414177i 0.721339 0.692583i \(-0.243527\pi\)
−0.960463 + 0.278406i \(0.910194\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.86196 3.05376i 0.483760 0.516180i
\(36\) 0 0
\(37\) 0.880766 + 1.52553i 0.144797 + 0.250796i 0.929297 0.369333i \(-0.120414\pi\)
−0.784500 + 0.620129i \(0.787080\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.858924 1.48770i 0.134141 0.232340i −0.791128 0.611651i \(-0.790506\pi\)
0.925269 + 0.379311i \(0.123839\pi\)
\(42\) 0 0
\(43\) 5.12012 + 8.86831i 0.780811 + 1.35240i 0.931470 + 0.363819i \(0.118527\pi\)
−0.150658 + 0.988586i \(0.548139\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.60417 + 4.51056i −0.379857 + 0.657932i −0.991041 0.133556i \(-0.957360\pi\)
0.611184 + 0.791489i \(0.290694\pi\)
\(48\) 0 0
\(49\) −0.453429 6.98530i −0.0647756 0.997900i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.479996 0.831377i 0.0659325 0.114198i −0.831175 0.556011i \(-0.812331\pi\)
0.897107 + 0.441813i \(0.145664\pi\)
\(54\) 0 0
\(55\) 8.18049 1.10306
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.66676 + 8.08307i 0.607561 + 1.05233i 0.991641 + 0.129027i \(0.0411852\pi\)
−0.384080 + 0.923300i \(0.625481\pi\)
\(60\) 0 0
\(61\) −7.19512 + 12.4623i −0.921241 + 1.59564i −0.123742 + 0.992314i \(0.539490\pi\)
−0.797498 + 0.603321i \(0.793844\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.07882 + 1.86856i −0.133811 + 0.231767i
\(66\) 0 0
\(67\) −6.24903 10.8236i −0.763441 1.32232i −0.941067 0.338220i \(-0.890175\pi\)
0.177626 0.984098i \(-0.443158\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.49160 −0.533055 −0.266527 0.963827i \(-0.585876\pi\)
−0.266527 + 0.963827i \(0.585876\pi\)
\(72\) 0 0
\(73\) −0.941655 + 1.63099i −0.110212 + 0.190893i −0.915856 0.401507i \(-0.868486\pi\)
0.805643 + 0.592401i \(0.201820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.35619 9.98321i 1.06624 1.13769i
\(78\) 0 0
\(79\) 3.26752 5.65951i 0.367625 0.636745i −0.621569 0.783360i \(-0.713504\pi\)
0.989194 + 0.146615i \(0.0468377\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.08661 8.81026i −0.558328 0.967052i −0.997636 0.0687156i \(-0.978110\pi\)
0.439309 0.898336i \(-0.355223\pi\)
\(84\) 0 0
\(85\) 3.65066 6.32314i 0.395970 0.685840i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.12369 + 7.14243i 0.437110 + 0.757096i 0.997465 0.0711559i \(-0.0226688\pi\)
−0.560355 + 0.828252i \(0.689335\pi\)
\(90\) 0 0
\(91\) 1.04647 + 3.45366i 0.109700 + 0.362042i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0508957 0.0881539i −0.00522178 0.00904440i
\(96\) 0 0
\(97\) −7.26638 12.5857i −0.737789 1.27789i −0.953489 0.301428i \(-0.902537\pi\)
0.215700 0.976460i \(-0.430797\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.24620 −0.621520 −0.310760 0.950488i \(-0.600584\pi\)
−0.310760 + 0.950488i \(0.600584\pi\)
\(102\) 0 0
\(103\) 5.77762 0.569286 0.284643 0.958634i \(-0.408125\pi\)
0.284643 + 0.958634i \(0.408125\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.251126 0.434963i −0.0242773 0.0420494i 0.853632 0.520877i \(-0.174395\pi\)
−0.877909 + 0.478828i \(0.841062\pi\)
\(108\) 0 0
\(109\) −2.37218 + 4.10874i −0.227214 + 0.393546i −0.956981 0.290149i \(-0.906295\pi\)
0.729767 + 0.683696i \(0.239628\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.11328 1.92825i 0.104728 0.181395i −0.808899 0.587948i \(-0.799936\pi\)
0.913627 + 0.406553i \(0.133269\pi\)
\(114\) 0 0
\(115\) 10.6681 0.994804
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.54121 11.6870i −0.324623 1.07135i
\(120\) 0 0
\(121\) 15.7432 1.43120
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8604 −1.06082
\(126\) 0 0
\(127\) 18.6057 1.65099 0.825494 0.564410i \(-0.190896\pi\)
0.825494 + 0.564410i \(0.190896\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.5404 1.18303 0.591515 0.806294i \(-0.298530\pi\)
0.591515 + 0.806294i \(0.298530\pi\)
\(132\) 0 0
\(133\) −0.165791 0.0387119i −0.0143759 0.00335675i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7420 −1.17406 −0.587029 0.809566i \(-0.699702\pi\)
−0.587029 + 0.809566i \(0.699702\pi\)
\(138\) 0 0
\(139\) −6.79328 + 11.7663i −0.576198 + 0.998005i 0.419712 + 0.907657i \(0.362131\pi\)
−0.995910 + 0.0903476i \(0.971202\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.52681 + 6.10861i −0.294927 + 0.510828i
\(144\) 0 0
\(145\) −7.44726 12.8990i −0.618461 1.07121i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.96066 −0.488317 −0.244158 0.969735i \(-0.578512\pi\)
−0.244158 + 0.969735i \(0.578512\pi\)
\(150\) 0 0
\(151\) −8.54142 −0.695091 −0.347546 0.937663i \(-0.612985\pi\)
−0.347546 + 0.937663i \(0.612985\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.10610 3.64786i −0.169166 0.293004i
\(156\) 0 0
\(157\) 1.31996 + 2.28623i 0.105344 + 0.182461i 0.913879 0.405987i \(-0.133072\pi\)
−0.808535 + 0.588449i \(0.799739\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.2013 13.0190i 0.961597 1.02604i
\(162\) 0 0
\(163\) 8.87875 + 15.3785i 0.695438 + 1.20453i 0.970033 + 0.242973i \(0.0781228\pi\)
−0.274595 + 0.961560i \(0.588544\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.98937 6.90979i 0.308706 0.534695i −0.669373 0.742926i \(-0.733437\pi\)
0.978080 + 0.208231i \(0.0667706\pi\)
\(168\) 0 0
\(169\) 5.56979 + 9.64716i 0.428446 + 0.742090i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.83170 6.63670i 0.291319 0.504579i −0.682803 0.730603i \(-0.739239\pi\)
0.974122 + 0.226023i \(0.0725726\pi\)
\(174\) 0 0
\(175\) −4.51884 + 4.82168i −0.341592 + 0.364485i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.7864 20.4147i 0.880958 1.52586i 0.0306808 0.999529i \(-0.490232\pi\)
0.850277 0.526335i \(-0.176434\pi\)
\(180\) 0 0
\(181\) 17.3700 1.29110 0.645551 0.763717i \(-0.276628\pi\)
0.645551 + 0.763717i \(0.276628\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.39326 + 2.41320i 0.102435 + 0.177422i
\(186\) 0 0
\(187\) 11.9346 20.6713i 0.872742 1.51163i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.42330 + 4.19728i −0.175344 + 0.303704i −0.940280 0.340402i \(-0.889437\pi\)
0.764936 + 0.644106i \(0.222770\pi\)
\(192\) 0 0
\(193\) 7.32091 + 12.6802i 0.526970 + 0.912739i 0.999506 + 0.0314278i \(0.0100054\pi\)
−0.472536 + 0.881312i \(0.656661\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.1996 1.36791 0.683957 0.729522i \(-0.260257\pi\)
0.683957 + 0.729522i \(0.260257\pi\)
\(198\) 0 0
\(199\) −6.50796 + 11.2721i −0.461337 + 0.799060i −0.999028 0.0440825i \(-0.985964\pi\)
0.537691 + 0.843142i \(0.319297\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −24.2591 5.66448i −1.70266 0.397569i
\(204\) 0 0
\(205\) 1.35871 2.35336i 0.0948965 0.164366i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.166385 0.288188i −0.0115091 0.0199344i
\(210\) 0 0
\(211\) 7.43389 12.8759i 0.511770 0.886412i −0.488137 0.872767i \(-0.662323\pi\)
0.999907 0.0136450i \(-0.00434348\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.09940 + 14.0286i 0.552374 + 0.956740i
\(216\) 0 0
\(217\) −6.86052 1.60192i −0.465722 0.108746i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.14778 + 5.45212i 0.211743 + 0.366749i
\(222\) 0 0
\(223\) −11.2085 19.4136i −0.750574 1.30003i −0.947545 0.319623i \(-0.896444\pi\)
0.196971 0.980409i \(-0.436890\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.89450 0.258487 0.129243 0.991613i \(-0.458745\pi\)
0.129243 + 0.991613i \(0.458745\pi\)
\(228\) 0 0
\(229\) −1.38717 −0.0916669 −0.0458334 0.998949i \(-0.514594\pi\)
−0.0458334 + 0.998949i \(0.514594\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.99057 15.5721i −0.588992 1.02016i −0.994365 0.106013i \(-0.966192\pi\)
0.405373 0.914151i \(-0.367142\pi\)
\(234\) 0 0
\(235\) −4.11947 + 7.13514i −0.268725 + 0.465445i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.68043 + 4.64264i −0.173382 + 0.300307i −0.939600 0.342274i \(-0.888803\pi\)
0.766218 + 0.642581i \(0.222136\pi\)
\(240\) 0 0
\(241\) 0.416592 0.0268351 0.0134175 0.999910i \(-0.495729\pi\)
0.0134175 + 0.999910i \(0.495729\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.717269 11.0499i −0.0458246 0.705951i
\(246\) 0 0
\(247\) 0.0877694 0.00558464
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.5606 1.42401 0.712006 0.702173i \(-0.247787\pi\)
0.712006 + 0.702173i \(0.247787\pi\)
\(252\) 0 0
\(253\) 34.8756 2.19261
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.0461 0.689039 0.344520 0.938779i \(-0.388042\pi\)
0.344520 + 0.938779i \(0.388042\pi\)
\(258\) 0 0
\(259\) 4.53850 + 1.05973i 0.282008 + 0.0658486i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −25.4620 −1.57006 −0.785028 0.619460i \(-0.787352\pi\)
−0.785028 + 0.619460i \(0.787352\pi\)
\(264\) 0 0
\(265\) 0.759294 1.31514i 0.0466430 0.0807881i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.78957 + 4.83168i −0.170083 + 0.294593i −0.938449 0.345419i \(-0.887737\pi\)
0.768366 + 0.640011i \(0.221070\pi\)
\(270\) 0 0
\(271\) 1.46645 + 2.53997i 0.0890806 + 0.154292i 0.907123 0.420866i \(-0.138274\pi\)
−0.818042 + 0.575158i \(0.804940\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.9164 −0.778889
\(276\) 0 0
\(277\) 22.0917 1.32736 0.663680 0.748016i \(-0.268993\pi\)
0.663680 + 0.748016i \(0.268993\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.81009 + 4.86721i 0.167636 + 0.290354i 0.937588 0.347748i \(-0.113053\pi\)
−0.769952 + 0.638101i \(0.779720\pi\)
\(282\) 0 0
\(283\) 10.6502 + 18.4466i 0.633086 + 1.09654i 0.986917 + 0.161228i \(0.0515454\pi\)
−0.353831 + 0.935309i \(0.615121\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.31798 4.34971i −0.0777977 0.256755i
\(288\) 0 0
\(289\) −2.15195 3.72729i −0.126585 0.219252i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.1128 + 24.4440i −0.824477 + 1.42804i 0.0778418 + 0.996966i \(0.475197\pi\)
−0.902319 + 0.431070i \(0.858136\pi\)
\(294\) 0 0
\(295\) 7.38224 + 12.7864i 0.429811 + 0.744454i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.59927 + 7.96617i −0.265983 + 0.460696i
\(300\) 0 0
\(301\) 26.3834 + 6.16050i 1.52072 + 0.355086i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11.3818 + 19.7138i −0.651719 + 1.12881i
\(306\) 0 0
\(307\) 2.41329 0.137734 0.0688669 0.997626i \(-0.478062\pi\)
0.0688669 + 0.997626i \(0.478062\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.76840 8.25911i −0.270391 0.468331i 0.698571 0.715541i \(-0.253820\pi\)
−0.968962 + 0.247210i \(0.920486\pi\)
\(312\) 0 0
\(313\) −16.3010 + 28.2341i −0.921386 + 1.59589i −0.124112 + 0.992268i \(0.539608\pi\)
−0.797273 + 0.603619i \(0.793725\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.54977 + 2.68428i −0.0870438 + 0.150764i −0.906260 0.422720i \(-0.861075\pi\)
0.819216 + 0.573484i \(0.194409\pi\)
\(318\) 0 0
\(319\) −24.3462 42.1689i −1.36313 2.36100i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.297008 −0.0165260
\(324\) 0 0
\(325\) 1.70337 2.95033i 0.0944862 0.163655i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.99597 + 13.1879i 0.220305 + 0.727071i
\(330\) 0 0
\(331\) −1.83825 + 3.18394i −0.101039 + 0.175005i −0.912113 0.409939i \(-0.865550\pi\)
0.811074 + 0.584944i \(0.198883\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.88519 17.1216i −0.540086 0.935456i
\(336\) 0 0
\(337\) 6.15866 10.6671i 0.335483 0.581074i −0.648094 0.761560i \(-0.724434\pi\)
0.983578 + 0.180486i \(0.0577670\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.88514 11.9254i −0.372851 0.645797i
\(342\) 0 0
\(343\) −14.3053 11.7626i −0.772412 0.635122i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.85078 + 15.3300i 0.475135 + 0.822958i 0.999594 0.0284778i \(-0.00906598\pi\)
−0.524460 + 0.851435i \(0.675733\pi\)
\(348\) 0 0
\(349\) 0.562639 + 0.974519i 0.0301174 + 0.0521648i 0.880691 0.473691i \(-0.157079\pi\)
−0.850574 + 0.525856i \(0.823745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.9625 0.583475 0.291738 0.956498i \(-0.405767\pi\)
0.291738 + 0.956498i \(0.405767\pi\)
\(354\) 0 0
\(355\) −7.10515 −0.377102
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.4733 23.3364i −0.711092 1.23165i −0.964448 0.264274i \(-0.914868\pi\)
0.253356 0.967373i \(-0.418466\pi\)
\(360\) 0 0
\(361\) 9.49793 16.4509i 0.499891 0.865837i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.48958 + 2.58003i −0.0779682 + 0.135045i
\(366\) 0 0
\(367\) −34.8273 −1.81797 −0.908986 0.416826i \(-0.863142\pi\)
−0.908986 + 0.416826i \(0.863142\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.736530 2.43076i −0.0382387 0.126199i
\(372\) 0 0
\(373\) −23.1585 −1.19910 −0.599551 0.800336i \(-0.704654\pi\)
−0.599551 + 0.800336i \(0.704654\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.8428 0.661437
\(378\) 0 0
\(379\) −22.7259 −1.16735 −0.583676 0.811987i \(-0.698386\pi\)
−0.583676 + 0.811987i \(0.698386\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 23.2041 1.18567 0.592837 0.805322i \(-0.298008\pi\)
0.592837 + 0.805322i \(0.298008\pi\)
\(384\) 0 0
\(385\) 14.8003 15.7922i 0.754294 0.804844i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.13474 0.463149 0.231575 0.972817i \(-0.425612\pi\)
0.231575 + 0.972817i \(0.425612\pi\)
\(390\) 0 0
\(391\) 15.5637 26.9572i 0.787092 1.36328i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.16881 8.95265i 0.260071 0.450456i
\(396\) 0 0
\(397\) −19.2126 33.2773i −0.964255 1.67014i −0.711603 0.702582i \(-0.752031\pi\)
−0.252652 0.967557i \(-0.581303\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.94696 −0.147164 −0.0735821 0.997289i \(-0.523443\pi\)
−0.0735821 + 0.997289i \(0.523443\pi\)
\(402\) 0 0
\(403\) 3.63196 0.180921
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.55478 + 7.88912i 0.225772 + 0.391049i
\(408\) 0 0
\(409\) −3.30296 5.72089i −0.163321 0.282880i 0.772737 0.634726i \(-0.218887\pi\)
−0.936058 + 0.351847i \(0.885554\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0473 + 5.61503i 1.18329 + 0.276297i
\(414\) 0 0
\(415\) −8.04638 13.9367i −0.394981 0.684127i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.381961 + 0.661576i −0.0186600 + 0.0323201i −0.875205 0.483753i \(-0.839273\pi\)
0.856545 + 0.516073i \(0.172607\pi\)
\(420\) 0 0
\(421\) −2.48798 4.30931i −0.121257 0.210023i 0.799007 0.601322i \(-0.205359\pi\)
−0.920264 + 0.391299i \(0.872026\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.76414 + 9.98378i −0.279602 + 0.484285i
\(426\) 0 0
\(427\) 11.0406 + 36.4371i 0.534290 + 1.76331i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.01856 + 6.96035i −0.193567 + 0.335268i −0.946430 0.322909i \(-0.895339\pi\)
0.752863 + 0.658178i \(0.228672\pi\)
\(432\) 0 0
\(433\) −10.8006 −0.519043 −0.259522 0.965737i \(-0.583565\pi\)
−0.259522 + 0.965737i \(0.583565\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.216981 0.375823i −0.0103796 0.0179780i
\(438\) 0 0
\(439\) −10.0597 + 17.4239i −0.480122 + 0.831596i −0.999740 0.0228028i \(-0.992741\pi\)
0.519618 + 0.854399i \(0.326074\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.60623 7.97822i 0.218848 0.379057i −0.735608 0.677408i \(-0.763103\pi\)
0.954456 + 0.298351i \(0.0964366\pi\)
\(444\) 0 0
\(445\) 6.52316 + 11.2984i 0.309227 + 0.535597i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.4840 1.06109 0.530544 0.847658i \(-0.321988\pi\)
0.530544 + 0.847658i \(0.321988\pi\)
\(450\) 0 0
\(451\) 4.44183 7.69347i 0.209158 0.362271i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.65539 + 5.46327i 0.0776058 + 0.256122i
\(456\) 0 0
\(457\) −9.39776 + 16.2774i −0.439609 + 0.761425i −0.997659 0.0683823i \(-0.978216\pi\)
0.558050 + 0.829807i \(0.311550\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.3773 17.9739i −0.483317 0.837129i 0.516500 0.856287i \(-0.327235\pi\)
−0.999816 + 0.0191582i \(0.993901\pi\)
\(462\) 0 0
\(463\) −10.0414 + 17.3922i −0.466663 + 0.808284i −0.999275 0.0380753i \(-0.987877\pi\)
0.532612 + 0.846360i \(0.321211\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.6015 + 25.2905i 0.675676 + 1.17030i 0.976271 + 0.216553i \(0.0694813\pi\)
−0.300595 + 0.953752i \(0.597185\pi\)
\(468\) 0 0
\(469\) −32.2006 7.51880i −1.48689 0.347186i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 26.4781 + 45.8615i 1.21747 + 2.10871i
\(474\) 0 0
\(475\) 0.0803606 + 0.139189i 0.00368720 + 0.00638642i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −40.0654 −1.83064 −0.915319 0.402731i \(-0.868061\pi\)
−0.915319 + 0.402731i \(0.868061\pi\)
\(480\) 0 0
\(481\) −2.40268 −0.109553
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.4945 19.9091i −0.521939 0.904024i
\(486\) 0 0
\(487\) −9.32801 + 16.1566i −0.422692 + 0.732125i −0.996202 0.0870742i \(-0.972248\pi\)
0.573509 + 0.819199i \(0.305582\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.285132 + 0.493864i −0.0128678 + 0.0222878i −0.872388 0.488815i \(-0.837429\pi\)
0.859520 + 0.511102i \(0.170763\pi\)
\(492\) 0 0
\(493\) −43.4594 −1.95731
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.12630 + 8.67090i −0.364514 + 0.388943i
\(498\) 0 0
\(499\) 0.928593 0.0415695 0.0207848 0.999784i \(-0.493384\pi\)
0.0207848 + 0.999784i \(0.493384\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.27170 −0.145878 −0.0729389 0.997336i \(-0.523238\pi\)
−0.0729389 + 0.997336i \(0.523238\pi\)
\(504\) 0 0
\(505\) −9.88071 −0.439686
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.96781 −0.397491 −0.198746 0.980051i \(-0.563687\pi\)
−0.198746 + 0.980051i \(0.563687\pi\)
\(510\) 0 0
\(511\) 1.44492 + 4.76867i 0.0639196 + 0.210953i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.13948 0.402734
\(516\) 0 0
\(517\) −13.4672 + 23.3258i −0.592286 + 1.02587i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.37649 9.31235i 0.235548 0.407982i −0.723884 0.689922i \(-0.757645\pi\)
0.959432 + 0.281940i \(0.0909781\pi\)
\(522\) 0 0
\(523\) 16.2796 + 28.1970i 0.711856 + 1.23297i 0.964160 + 0.265322i \(0.0854784\pi\)
−0.252304 + 0.967648i \(0.581188\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.2904 −0.535377
\(528\) 0 0
\(529\) 22.4808 0.977427
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.17155 + 2.02918i 0.0507453 + 0.0878935i
\(534\) 0 0
\(535\) −0.397250 0.688057i −0.0171746 0.0297473i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.34486 36.1237i −0.101000 1.55596i
\(540\) 0 0
\(541\) −3.46359 5.99911i −0.148911 0.257922i 0.781914 0.623386i \(-0.214244\pi\)
−0.930825 + 0.365464i \(0.880910\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.75250 + 6.49952i −0.160739 + 0.278409i
\(546\) 0 0
\(547\) 15.8974 + 27.5351i 0.679725 + 1.17732i 0.975064 + 0.221925i \(0.0712340\pi\)
−0.295339 + 0.955392i \(0.595433\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.302944 + 0.524715i −0.0129059 + 0.0223536i
\(552\) 0 0
\(553\) −5.01385 16.5472i −0.213211 0.703657i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.1679 + 24.5395i −0.600314 + 1.03977i 0.392460 + 0.919769i \(0.371624\pi\)
−0.992773 + 0.120005i \(0.961709\pi\)
\(558\) 0 0
\(559\) −13.9674 −0.590758
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.3270 + 38.6715i 0.940972 + 1.62981i 0.763622 + 0.645664i \(0.223419\pi\)
0.177350 + 0.984148i \(0.443248\pi\)
\(564\) 0 0
\(565\) 1.76106 3.05025i 0.0740885 0.128325i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.6102 + 18.3775i −0.444804 + 0.770423i −0.998039 0.0626026i \(-0.980060\pi\)
0.553235 + 0.833025i \(0.313393\pi\)
\(570\) 0 0
\(571\) 5.94786 + 10.3020i 0.248910 + 0.431125i 0.963224 0.268701i \(-0.0865943\pi\)
−0.714313 + 0.699826i \(0.753261\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.8442 −0.702450
\(576\) 0 0
\(577\) −19.3490 + 33.5135i −0.805511 + 1.39519i 0.110435 + 0.993883i \(0.464776\pi\)
−0.915946 + 0.401302i \(0.868558\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −26.2107 6.12018i −1.08741 0.253908i
\(582\) 0 0
\(583\) 2.48224 4.29937i 0.102804 0.178062i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.92138 + 17.1843i 0.409499 + 0.709274i 0.994834 0.101518i \(-0.0323701\pi\)
−0.585334 + 0.810792i \(0.699037\pi\)
\(588\) 0 0
\(589\) −0.0856730 + 0.148390i −0.00353010 + 0.00611431i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.9566 18.9774i −0.449933 0.779307i 0.548448 0.836185i \(-0.315219\pi\)
−0.998381 + 0.0568775i \(0.981886\pi\)
\(594\) 0 0
\(595\) −5.60176 18.4875i −0.229650 0.757912i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.5223 28.6174i −0.675081 1.16928i −0.976445 0.215766i \(-0.930775\pi\)
0.301364 0.953509i \(-0.402558\pi\)
\(600\) 0 0
\(601\) 11.4951 + 19.9100i 0.468893 + 0.812147i 0.999368 0.0355541i \(-0.0113196\pi\)
−0.530475 + 0.847701i \(0.677986\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.9038 1.01248
\(606\) 0 0
\(607\) −27.6564 −1.12254 −0.561269 0.827634i \(-0.689686\pi\)
−0.561269 + 0.827634i \(0.689686\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.55201 6.15226i −0.143699 0.248894i
\(612\) 0 0
\(613\) −15.7684 + 27.3116i −0.636879 + 1.10311i 0.349235 + 0.937035i \(0.386442\pi\)
−0.986114 + 0.166072i \(0.946892\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.7513 18.6217i 0.432830 0.749683i −0.564286 0.825580i \(-0.690848\pi\)
0.997116 + 0.0758961i \(0.0241817\pi\)
\(618\) 0 0
\(619\) −28.2522 −1.13555 −0.567776 0.823183i \(-0.692196\pi\)
−0.567776 + 0.823183i \(0.692196\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.2489 + 4.96160i 0.851320 + 0.198782i
\(624\) 0 0
\(625\) −6.27330 −0.250932
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.13056 0.324187
\(630\) 0 0
\(631\) 9.12550 0.363281 0.181640 0.983365i \(-0.441859\pi\)
0.181640 + 0.983365i \(0.441859\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 29.4319 1.16797
\(636\) 0 0
\(637\) 8.56050 + 4.22826i 0.339179 + 0.167530i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −32.8978 −1.29939 −0.649693 0.760197i \(-0.725103\pi\)
−0.649693 + 0.760197i \(0.725103\pi\)
\(642\) 0 0
\(643\) −10.1276 + 17.5415i −0.399392 + 0.691767i −0.993651 0.112506i \(-0.964112\pi\)
0.594259 + 0.804274i \(0.297445\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.67441 + 9.82837i −0.223084 + 0.386393i −0.955743 0.294203i \(-0.904946\pi\)
0.732659 + 0.680596i \(0.238279\pi\)
\(648\) 0 0
\(649\) 24.1336 + 41.8007i 0.947328 + 1.64082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.58036 −0.140110 −0.0700552 0.997543i \(-0.522318\pi\)
−0.0700552 + 0.997543i \(0.522318\pi\)
\(654\) 0 0
\(655\) 21.4192 0.836918
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.13582 + 15.8237i 0.355881 + 0.616404i 0.987268 0.159064i \(-0.0508475\pi\)
−0.631387 + 0.775468i \(0.717514\pi\)
\(660\) 0 0
\(661\) −1.11696 1.93462i −0.0434446 0.0752482i 0.843485 0.537152i \(-0.180500\pi\)
−0.886930 + 0.461904i \(0.847167\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.262260 0.0612374i −0.0101700 0.00237468i
\(666\) 0 0
\(667\) −31.7496 54.9919i −1.22935 2.12930i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −37.2087 + 64.4474i −1.43643 + 2.48797i
\(672\) 0 0
\(673\) −12.4804 21.6166i −0.481083 0.833260i 0.518681 0.854968i \(-0.326423\pi\)
−0.999764 + 0.0217074i \(0.993090\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.90633 + 17.1583i −0.380731 + 0.659446i −0.991167 0.132620i \(-0.957661\pi\)
0.610436 + 0.792066i \(0.290994\pi\)
\(678\) 0 0
\(679\) −37.4429 8.74287i −1.43693 0.335521i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.72871 9.92242i 0.219203 0.379671i −0.735361 0.677675i \(-0.762988\pi\)
0.954565 + 0.298004i \(0.0963209\pi\)
\(684\) 0 0
\(685\) −21.7381 −0.830571
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.654700 + 1.13397i 0.0249421 + 0.0432010i
\(690\) 0 0
\(691\) 20.2552 35.0831i 0.770545 1.33462i −0.166719 0.986004i \(-0.553317\pi\)
0.937265 0.348619i \(-0.113349\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.7461 + 18.6128i −0.407624 + 0.706025i
\(696\) 0 0
\(697\) −3.96446 6.86665i −0.150165 0.260093i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.5416 1.11577 0.557885 0.829918i \(-0.311613\pi\)
0.557885 + 0.829918i \(0.311613\pi\)
\(702\) 0 0
\(703\) 0.0566760 0.0981657i 0.00213758 0.00370239i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.3008 + 12.0581i −0.425009 + 0.453492i
\(708\) 0 0
\(709\) 18.7407 32.4599i 0.703822 1.21906i −0.263293 0.964716i \(-0.584809\pi\)
0.967115 0.254340i \(-0.0818581\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.97883 15.5518i −0.336260 0.582419i
\(714\) 0 0
\(715\) −5.57897 + 9.66306i −0.208642 + 0.361378i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.35418 + 11.0058i 0.236971 + 0.410445i 0.959844 0.280536i \(-0.0905121\pi\)
−0.722873 + 0.690981i \(0.757179\pi\)
\(720\) 0 0
\(721\) 10.4530 11.1535i 0.389290 0.415379i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.7587 + 20.3667i 0.436707 + 0.756399i
\(726\) 0 0
\(727\) −19.9463 34.5480i −0.739768 1.28132i −0.952600 0.304227i \(-0.901602\pi\)
0.212832 0.977089i \(-0.431731\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 47.2650 1.74816
\(732\) 0 0
\(733\) −44.8182 −1.65540 −0.827699 0.561172i \(-0.810350\pi\)
−0.827699 + 0.561172i \(0.810350\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.3162 55.9732i −1.19038 2.06180i
\(738\) 0 0
\(739\) 6.64954 11.5173i 0.244607 0.423672i −0.717414 0.696647i \(-0.754674\pi\)
0.962021 + 0.272975i \(0.0880076\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.15562 3.73365i 0.0790822 0.136974i −0.823772 0.566921i \(-0.808134\pi\)
0.902854 + 0.429947i \(0.141468\pi\)
\(744\) 0 0
\(745\) −9.42903 −0.345453
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.29402 0.302153i −0.0472826 0.0110404i
\(750\) 0 0
\(751\) 43.5303 1.58844 0.794221 0.607629i \(-0.207879\pi\)
0.794221 + 0.607629i \(0.207879\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.5115 −0.491733
\(756\) 0 0
\(757\) 34.6790 1.26043 0.630215 0.776420i \(-0.282967\pi\)
0.630215 + 0.776420i \(0.282967\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.51946 0.127580 0.0637902 0.997963i \(-0.479681\pi\)
0.0637902 + 0.997963i \(0.479681\pi\)
\(762\) 0 0
\(763\) 3.64000 + 12.0131i 0.131777 + 0.434902i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.7307 −0.459677
\(768\) 0 0
\(769\) −19.5075 + 33.7879i −0.703457 + 1.21842i 0.263788 + 0.964581i \(0.415028\pi\)
−0.967245 + 0.253843i \(0.918305\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −23.2169 + 40.2128i −0.835054 + 1.44636i 0.0589329 + 0.998262i \(0.481230\pi\)
−0.893987 + 0.448094i \(0.852103\pi\)
\(774\) 0 0
\(775\) 3.32538 + 5.75972i 0.119451 + 0.206895i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.110541 −0.00396054
\(780\) 0 0
\(781\) −23.2278 −0.831156
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.08801 + 3.61654i 0.0745242 + 0.129080i
\(786\) 0 0
\(787\) 23.7212 + 41.0863i 0.845569 + 1.46457i 0.885126 + 0.465351i \(0.154072\pi\)
−0.0395575 + 0.999217i \(0.512595\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.70827 5.63778i −0.0607390 0.200456i
\(792\) 0 0
\(793\) −9.81393 16.9982i −0.348503 0.603625i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.69773 + 13.3329i −0.272668 + 0.472274i −0.969544 0.244917i \(-0.921239\pi\)
0.696876 + 0.717191i \(0.254573\pi\)
\(798\) 0 0
\(799\) 12.0198 + 20.8190i 0.425232 + 0.736523i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.86966 + 8.43450i −0.171847 + 0.297647i
\(804\) 0 0
\(805\) 19.3009 20.5944i 0.680269 0.725858i
\(806\) 0 0