Properties

Label 3024.2.t.l.1873.4
Level $3024$
Weight $2$
Character 3024.1873
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.4
Character \(\chi\) \(=\) 3024.1873
Dual form 3024.2.t.l.289.4

$q$-expansion

\(f(q)\) \(=\) \(q-1.68316 q^{5} +(-0.960133 - 2.46539i) q^{7} +O(q^{10})\) \(q-1.68316 q^{5} +(-0.960133 - 2.46539i) q^{7} +1.24498 q^{11} +(1.96039 - 3.39550i) q^{13} +(1.62691 - 2.81788i) q^{17} +(-2.36192 - 4.09097i) q^{19} -0.398135 q^{23} -2.16699 q^{25} +(3.19896 + 5.54076i) q^{29} +(-0.289184 - 0.500881i) q^{31} +(1.61605 + 4.14963i) q^{35} +(2.72146 + 4.71371i) q^{37} +(-4.20216 + 7.27836i) q^{41} +(-2.46299 - 4.26603i) q^{43} +(0.212595 - 0.368225i) q^{47} +(-5.15629 + 4.73420i) q^{49} +(0.466315 - 0.807681i) q^{53} -2.09550 q^{55} +(-3.02527 - 5.23992i) q^{59} +(-5.10459 + 8.84140i) q^{61} +(-3.29965 + 5.71516i) q^{65} +(-4.70976 - 8.15754i) q^{67} +8.46617 q^{71} +(6.82340 - 11.8185i) q^{73} +(-1.19535 - 3.06936i) q^{77} +(-2.76670 + 4.79207i) q^{79} +(-8.03669 - 13.9199i) q^{83} +(-2.73833 + 4.74293i) q^{85} +(6.03776 + 10.4577i) q^{89} +(-10.2535 - 1.57300i) q^{91} +(3.97549 + 6.88575i) q^{95} +(-5.86046 - 10.1506i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.68316 −0.752730 −0.376365 0.926471i \(-0.622826\pi\)
−0.376365 + 0.926471i \(0.622826\pi\)
\(6\) 0 0
\(7\) −0.960133 2.46539i −0.362896 0.931830i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.24498 0.375376 0.187688 0.982229i \(-0.439901\pi\)
0.187688 + 0.982229i \(0.439901\pi\)
\(12\) 0 0
\(13\) 1.96039 3.39550i 0.543715 0.941743i −0.454971 0.890506i \(-0.650350\pi\)
0.998687 0.0512366i \(-0.0163162\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.62691 2.81788i 0.394582 0.683437i −0.598465 0.801149i \(-0.704223\pi\)
0.993048 + 0.117712i \(0.0375559\pi\)
\(18\) 0 0
\(19\) −2.36192 4.09097i −0.541863 0.938534i −0.998797 0.0490333i \(-0.984386\pi\)
0.456935 0.889500i \(-0.348947\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.398135 −0.0830170 −0.0415085 0.999138i \(-0.513216\pi\)
−0.0415085 + 0.999138i \(0.513216\pi\)
\(24\) 0 0
\(25\) −2.16699 −0.433397
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.19896 + 5.54076i 0.594032 + 1.02889i 0.993683 + 0.112226i \(0.0357979\pi\)
−0.399651 + 0.916667i \(0.630869\pi\)
\(30\) 0 0
\(31\) −0.289184 0.500881i −0.0519389 0.0899608i 0.838887 0.544306i \(-0.183207\pi\)
−0.890826 + 0.454345i \(0.849873\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.61605 + 4.14963i 0.273163 + 0.701416i
\(36\) 0 0
\(37\) 2.72146 + 4.71371i 0.447405 + 0.774928i 0.998216 0.0597015i \(-0.0190149\pi\)
−0.550811 + 0.834630i \(0.685682\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.20216 + 7.27836i −0.656267 + 1.13669i 0.325307 + 0.945608i \(0.394532\pi\)
−0.981574 + 0.191080i \(0.938801\pi\)
\(42\) 0 0
\(43\) −2.46299 4.26603i −0.375603 0.650563i 0.614814 0.788672i \(-0.289231\pi\)
−0.990417 + 0.138109i \(0.955898\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.212595 0.368225i 0.0310101 0.0537112i −0.850104 0.526615i \(-0.823461\pi\)
0.881114 + 0.472904i \(0.156794\pi\)
\(48\) 0 0
\(49\) −5.15629 + 4.73420i −0.736613 + 0.676315i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.466315 0.807681i 0.0640533 0.110944i −0.832220 0.554445i \(-0.812931\pi\)
0.896274 + 0.443501i \(0.146264\pi\)
\(54\) 0 0
\(55\) −2.09550 −0.282557
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.02527 5.23992i −0.393856 0.682179i 0.599098 0.800676i \(-0.295526\pi\)
−0.992954 + 0.118496i \(0.962193\pi\)
\(60\) 0 0
\(61\) −5.10459 + 8.84140i −0.653575 + 1.13203i 0.328674 + 0.944444i \(0.393398\pi\)
−0.982249 + 0.187582i \(0.939935\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.29965 + 5.71516i −0.409271 + 0.708878i
\(66\) 0 0
\(67\) −4.70976 8.15754i −0.575389 0.996602i −0.995999 0.0893612i \(-0.971517\pi\)
0.420611 0.907241i \(-0.361816\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.46617 1.00475 0.502375 0.864650i \(-0.332460\pi\)
0.502375 + 0.864650i \(0.332460\pi\)
\(72\) 0 0
\(73\) 6.82340 11.8185i 0.798619 1.38325i −0.121897 0.992543i \(-0.538898\pi\)
0.920516 0.390705i \(-0.127769\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.19535 3.06936i −0.136222 0.349786i
\(78\) 0 0
\(79\) −2.76670 + 4.79207i −0.311278 + 0.539149i −0.978639 0.205585i \(-0.934090\pi\)
0.667361 + 0.744734i \(0.267424\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.03669 13.9199i −0.882141 1.52791i −0.848956 0.528463i \(-0.822768\pi\)
−0.0331848 0.999449i \(-0.510565\pi\)
\(84\) 0 0
\(85\) −2.73833 + 4.74293i −0.297014 + 0.514444i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.03776 + 10.4577i 0.640001 + 1.10851i 0.985432 + 0.170070i \(0.0543993\pi\)
−0.345431 + 0.938444i \(0.612267\pi\)
\(90\) 0 0
\(91\) −10.2535 1.57300i −1.07486 0.164895i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.97549 + 6.88575i 0.407876 + 0.706463i
\(96\) 0 0
\(97\) −5.86046 10.1506i −0.595040 1.03064i −0.993541 0.113472i \(-0.963803\pi\)
0.398501 0.917168i \(-0.369530\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.40605 −0.537922 −0.268961 0.963151i \(-0.586680\pi\)
−0.268961 + 0.963151i \(0.586680\pi\)
\(102\) 0 0
\(103\) −14.6204 −1.44059 −0.720294 0.693669i \(-0.755993\pi\)
−0.720294 + 0.693669i \(0.755993\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.40209 5.89259i −0.328892 0.569658i 0.653400 0.757013i \(-0.273342\pi\)
−0.982292 + 0.187354i \(0.940009\pi\)
\(108\) 0 0
\(109\) 8.37636 14.5083i 0.802310 1.38964i −0.115783 0.993275i \(-0.536938\pi\)
0.918092 0.396367i \(-0.129729\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.77154 + 11.7287i −0.637013 + 1.10334i 0.349072 + 0.937096i \(0.386497\pi\)
−0.986085 + 0.166243i \(0.946836\pi\)
\(114\) 0 0
\(115\) 0.670124 0.0624894
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.50922 1.30541i −0.780039 0.119667i
\(120\) 0 0
\(121\) −9.45002 −0.859093
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0632 1.07896
\(126\) 0 0
\(127\) −10.5904 −0.939748 −0.469874 0.882734i \(-0.655701\pi\)
−0.469874 + 0.882734i \(0.655701\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −22.3638 −1.95394 −0.976968 0.213387i \(-0.931551\pi\)
−0.976968 + 0.213387i \(0.931551\pi\)
\(132\) 0 0
\(133\) −7.81808 + 9.75094i −0.677914 + 0.845514i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.9540 −1.53391 −0.766957 0.641699i \(-0.778230\pi\)
−0.766957 + 0.641699i \(0.778230\pi\)
\(138\) 0 0
\(139\) −0.570825 + 0.988699i −0.0484168 + 0.0838603i −0.889218 0.457483i \(-0.848751\pi\)
0.840801 + 0.541344i \(0.182084\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44065 4.22733i 0.204098 0.353507i
\(144\) 0 0
\(145\) −5.38434 9.32596i −0.447145 0.774479i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.6583 −1.44663 −0.723313 0.690521i \(-0.757381\pi\)
−0.723313 + 0.690521i \(0.757381\pi\)
\(150\) 0 0
\(151\) 15.2354 1.23984 0.619919 0.784666i \(-0.287166\pi\)
0.619919 + 0.784666i \(0.287166\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.486741 + 0.843060i 0.0390960 + 0.0677162i
\(156\) 0 0
\(157\) 6.81439 + 11.8029i 0.543847 + 0.941971i 0.998678 + 0.0513933i \(0.0163662\pi\)
−0.454831 + 0.890578i \(0.650300\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.382263 + 0.981559i 0.0301265 + 0.0773577i
\(162\) 0 0
\(163\) 4.04726 + 7.01005i 0.317006 + 0.549070i 0.979862 0.199677i \(-0.0639893\pi\)
−0.662856 + 0.748747i \(0.730656\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.07739 + 3.59814i −0.160753 + 0.278433i −0.935139 0.354281i \(-0.884726\pi\)
0.774386 + 0.632714i \(0.218059\pi\)
\(168\) 0 0
\(169\) −1.18629 2.05471i −0.0912529 0.158055i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.91730 11.9811i 0.525913 0.910907i −0.473632 0.880723i \(-0.657057\pi\)
0.999544 0.0301845i \(-0.00960947\pi\)
\(174\) 0 0
\(175\) 2.08059 + 5.34247i 0.157278 + 0.403852i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.71167 + 8.16084i −0.352166 + 0.609970i −0.986629 0.162984i \(-0.947888\pi\)
0.634462 + 0.772954i \(0.281222\pi\)
\(180\) 0 0
\(181\) 1.32133 0.0982136 0.0491068 0.998794i \(-0.484363\pi\)
0.0491068 + 0.998794i \(0.484363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.58064 7.93390i −0.336775 0.583312i
\(186\) 0 0
\(187\) 2.02546 3.50821i 0.148117 0.256546i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.14271 + 14.1036i −0.589186 + 1.02050i 0.405153 + 0.914249i \(0.367218\pi\)
−0.994339 + 0.106251i \(0.966115\pi\)
\(192\) 0 0
\(193\) −1.28077 2.21837i −0.0921921 0.159681i 0.816241 0.577711i \(-0.196054\pi\)
−0.908433 + 0.418030i \(0.862721\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.6916 −1.54546 −0.772730 0.634735i \(-0.781109\pi\)
−0.772730 + 0.634735i \(0.781109\pi\)
\(198\) 0 0
\(199\) 5.59684 9.69402i 0.396750 0.687191i −0.596573 0.802559i \(-0.703471\pi\)
0.993323 + 0.115368i \(0.0368047\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.5887 13.2065i 0.743181 0.926917i
\(204\) 0 0
\(205\) 7.07289 12.2506i 0.493992 0.855620i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.94055 5.09318i −0.203402 0.352303i
\(210\) 0 0
\(211\) 14.1807 24.5616i 0.976237 1.69089i 0.300444 0.953799i \(-0.402865\pi\)
0.675793 0.737092i \(-0.263801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.14560 + 7.18039i 0.282728 + 0.489699i
\(216\) 0 0
\(217\) −0.957211 + 1.19386i −0.0649797 + 0.0810446i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.37875 11.0483i −0.429081 0.743190i
\(222\) 0 0
\(223\) 12.6962 + 21.9905i 0.850202 + 1.47259i 0.881026 + 0.473068i \(0.156853\pi\)
−0.0308242 + 0.999525i \(0.509813\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.62860 0.307211 0.153606 0.988132i \(-0.450911\pi\)
0.153606 + 0.988132i \(0.450911\pi\)
\(228\) 0 0
\(229\) 2.32592 0.153701 0.0768506 0.997043i \(-0.475514\pi\)
0.0768506 + 0.997043i \(0.475514\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.37989 + 11.0503i 0.417960 + 0.723929i 0.995734 0.0922683i \(-0.0294117\pi\)
−0.577774 + 0.816197i \(0.696078\pi\)
\(234\) 0 0
\(235\) −0.357830 + 0.619780i −0.0233423 + 0.0404300i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0492 + 19.1378i −0.714714 + 1.23792i 0.248355 + 0.968669i \(0.420110\pi\)
−0.963070 + 0.269252i \(0.913223\pi\)
\(240\) 0 0
\(241\) 20.0177 1.28945 0.644726 0.764414i \(-0.276972\pi\)
0.644726 + 0.764414i \(0.276972\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.67884 7.96840i 0.554471 0.509082i
\(246\) 0 0
\(247\) −18.5212 −1.17848
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.12390 −0.134059 −0.0670297 0.997751i \(-0.521352\pi\)
−0.0670297 + 0.997751i \(0.521352\pi\)
\(252\) 0 0
\(253\) −0.495671 −0.0311625
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.7630 0.796134 0.398067 0.917356i \(-0.369681\pi\)
0.398067 + 0.917356i \(0.369681\pi\)
\(258\) 0 0
\(259\) 9.00816 11.2352i 0.559740 0.698124i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.0686 −0.682522 −0.341261 0.939969i \(-0.610854\pi\)
−0.341261 + 0.939969i \(0.610854\pi\)
\(264\) 0 0
\(265\) −0.784881 + 1.35945i −0.0482148 + 0.0835105i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.77479 3.07403i 0.108211 0.187427i −0.806835 0.590777i \(-0.798821\pi\)
0.915046 + 0.403351i \(0.132154\pi\)
\(270\) 0 0
\(271\) 0.687666 + 1.19107i 0.0417727 + 0.0723525i 0.886156 0.463387i \(-0.153366\pi\)
−0.844383 + 0.535740i \(0.820033\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.69786 −0.162687
\(276\) 0 0
\(277\) −29.1617 −1.75216 −0.876079 0.482168i \(-0.839849\pi\)
−0.876079 + 0.482168i \(0.839849\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.29603 10.9050i −0.375590 0.650540i 0.614826 0.788663i \(-0.289226\pi\)
−0.990415 + 0.138123i \(0.955893\pi\)
\(282\) 0 0
\(283\) −4.73028 8.19309i −0.281186 0.487029i 0.690491 0.723341i \(-0.257394\pi\)
−0.971677 + 0.236312i \(0.924061\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.9786 + 3.37178i 1.29736 + 0.199030i
\(288\) 0 0
\(289\) 3.20636 + 5.55358i 0.188609 + 0.326681i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.32726 14.4232i 0.486484 0.842614i −0.513396 0.858152i \(-0.671613\pi\)
0.999879 + 0.0155376i \(0.00494598\pi\)
\(294\) 0 0
\(295\) 5.09200 + 8.81960i 0.296468 + 0.513497i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.780502 + 1.35187i −0.0451376 + 0.0781806i
\(300\) 0 0
\(301\) −8.15262 + 10.1682i −0.469909 + 0.586085i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.59181 14.8815i 0.491966 0.852110i
\(306\) 0 0
\(307\) 9.55966 0.545599 0.272799 0.962071i \(-0.412051\pi\)
0.272799 + 0.962071i \(0.412051\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.1851 22.8373i −0.747658 1.29498i −0.948943 0.315449i \(-0.897845\pi\)
0.201284 0.979533i \(-0.435488\pi\)
\(312\) 0 0
\(313\) 6.35091 11.0001i 0.358975 0.621762i −0.628815 0.777555i \(-0.716460\pi\)
0.987790 + 0.155792i \(0.0497931\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.0165768 0.0287119i 0.000931047 0.00161262i −0.865560 0.500806i \(-0.833037\pi\)
0.866491 + 0.499193i \(0.166370\pi\)
\(318\) 0 0
\(319\) 3.98264 + 6.89813i 0.222985 + 0.386221i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.3705 −0.855238
\(324\) 0 0
\(325\) −4.24815 + 7.35801i −0.235645 + 0.408149i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.11194 0.170584i −0.0613031 0.00940461i
\(330\) 0 0
\(331\) −2.42694 + 4.20358i −0.133397 + 0.231050i −0.924984 0.380006i \(-0.875922\pi\)
0.791587 + 0.611056i \(0.209255\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.92726 + 13.7304i 0.433112 + 0.750173i
\(336\) 0 0
\(337\) −4.32200 + 7.48592i −0.235434 + 0.407784i −0.959399 0.282053i \(-0.908985\pi\)
0.723965 + 0.689837i \(0.242318\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.360028 0.623586i −0.0194966 0.0337691i
\(342\) 0 0
\(343\) 16.6224 + 8.16680i 0.897524 + 0.440966i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.6116 + 20.1119i 0.623344 + 1.07966i 0.988859 + 0.148858i \(0.0475596\pi\)
−0.365515 + 0.930806i \(0.619107\pi\)
\(348\) 0 0
\(349\) −3.76025 6.51295i −0.201282 0.348630i 0.747660 0.664082i \(-0.231177\pi\)
−0.948942 + 0.315452i \(0.897844\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.919056 0.0489164 0.0244582 0.999701i \(-0.492214\pi\)
0.0244582 + 0.999701i \(0.492214\pi\)
\(354\) 0 0
\(355\) −14.2499 −0.756306
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.24300 + 14.2773i 0.435049 + 0.753527i 0.997300 0.0734398i \(-0.0233977\pi\)
−0.562251 + 0.826967i \(0.690064\pi\)
\(360\) 0 0
\(361\) −1.65737 + 2.87066i −0.0872302 + 0.151087i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.4848 + 19.8923i −0.601144 + 1.04121i
\(366\) 0 0
\(367\) 12.6784 0.661808 0.330904 0.943664i \(-0.392646\pi\)
0.330904 + 0.943664i \(0.392646\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.43897 0.374167i −0.126625 0.0194258i
\(372\) 0 0
\(373\) 22.6821 1.17443 0.587217 0.809430i \(-0.300224\pi\)
0.587217 + 0.809430i \(0.300224\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.0849 1.29194
\(378\) 0 0
\(379\) −19.0925 −0.980717 −0.490358 0.871521i \(-0.663134\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.07925 −0.310635 −0.155318 0.987865i \(-0.549640\pi\)
−0.155318 + 0.987865i \(0.549640\pi\)
\(384\) 0 0
\(385\) 2.01195 + 5.16621i 0.102539 + 0.263295i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.631562 0.0320214 0.0160107 0.999872i \(-0.494903\pi\)
0.0160107 + 0.999872i \(0.494903\pi\)
\(390\) 0 0
\(391\) −0.647728 + 1.12190i −0.0327570 + 0.0567368i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.65679 8.06579i 0.234308 0.405834i
\(396\) 0 0
\(397\) −18.1830 31.4939i −0.912578 1.58063i −0.810408 0.585865i \(-0.800755\pi\)
−0.102170 0.994767i \(-0.532579\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.6137 1.57871 0.789357 0.613934i \(-0.210414\pi\)
0.789357 + 0.613934i \(0.210414\pi\)
\(402\) 0 0
\(403\) −2.26765 −0.112960
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.38816 + 5.86847i 0.167945 + 0.290889i
\(408\) 0 0
\(409\) −10.0906 17.4774i −0.498948 0.864203i 0.501051 0.865418i \(-0.332947\pi\)
−0.999999 + 0.00121422i \(0.999614\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0138 + 12.4895i −0.492746 + 0.614567i
\(414\) 0 0
\(415\) 13.5270 + 23.4294i 0.664014 + 1.15011i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.4159 + 21.5049i −0.606555 + 1.05058i 0.385248 + 0.922813i \(0.374116\pi\)
−0.991804 + 0.127772i \(0.959217\pi\)
\(420\) 0 0
\(421\) −5.71841 9.90458i −0.278698 0.482720i 0.692363 0.721549i \(-0.256570\pi\)
−0.971062 + 0.238829i \(0.923236\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.52548 + 6.10631i −0.171011 + 0.296200i
\(426\) 0 0
\(427\) 26.6986 + 4.09587i 1.29203 + 0.198213i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.80157 4.85246i 0.134947 0.233735i −0.790630 0.612294i \(-0.790247\pi\)
0.925577 + 0.378559i \(0.123580\pi\)
\(432\) 0 0
\(433\) −4.22555 −0.203067 −0.101534 0.994832i \(-0.532375\pi\)
−0.101534 + 0.994832i \(0.532375\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.940366 + 1.62876i 0.0449838 + 0.0779142i
\(438\) 0 0
\(439\) −17.7316 + 30.7120i −0.846281 + 1.46580i 0.0382233 + 0.999269i \(0.487830\pi\)
−0.884504 + 0.466532i \(0.845503\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.4658 19.8593i 0.544755 0.943543i −0.453867 0.891069i \(-0.649956\pi\)
0.998622 0.0524740i \(-0.0167107\pi\)
\(444\) 0 0
\(445\) −10.1625 17.6019i −0.481748 0.834412i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.4850 −0.966747 −0.483373 0.875414i \(-0.660589\pi\)
−0.483373 + 0.875414i \(0.660589\pi\)
\(450\) 0 0
\(451\) −5.23161 + 9.06141i −0.246347 + 0.426685i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 17.2582 + 2.64761i 0.809076 + 0.124122i
\(456\) 0 0
\(457\) −7.72677 + 13.3832i −0.361443 + 0.626038i −0.988199 0.153178i \(-0.951049\pi\)
0.626755 + 0.779216i \(0.284383\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0815 24.3898i −0.655839 1.13595i −0.981683 0.190523i \(-0.938982\pi\)
0.325844 0.945424i \(-0.394352\pi\)
\(462\) 0 0
\(463\) 15.3193 26.5338i 0.711948 1.23313i −0.252177 0.967681i \(-0.581146\pi\)
0.964125 0.265449i \(-0.0855202\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.61798 11.4627i −0.306244 0.530429i 0.671294 0.741191i \(-0.265739\pi\)
−0.977537 + 0.210762i \(0.932406\pi\)
\(468\) 0 0
\(469\) −15.5895 + 19.4437i −0.719857 + 0.897827i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.06638 5.31112i −0.140992 0.244206i
\(474\) 0 0
\(475\) 5.11826 + 8.86508i 0.234842 + 0.406758i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.0872 0.643658 0.321829 0.946798i \(-0.395702\pi\)
0.321829 + 0.946798i \(0.395702\pi\)
\(480\) 0 0
\(481\) 21.3405 0.973044
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.86407 + 17.0851i 0.447904 + 0.775793i
\(486\) 0 0
\(487\) −3.45654 + 5.98690i −0.156631 + 0.271292i −0.933652 0.358183i \(-0.883397\pi\)
0.777021 + 0.629475i \(0.216730\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.3481 + 26.5837i −0.692651 + 1.19971i 0.278315 + 0.960490i \(0.410224\pi\)
−0.970966 + 0.239217i \(0.923109\pi\)
\(492\) 0 0
\(493\) 20.8176 0.937578
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.12865 20.8724i −0.364620 0.936256i
\(498\) 0 0
\(499\) 22.0371 0.986518 0.493259 0.869882i \(-0.335805\pi\)
0.493259 + 0.869882i \(0.335805\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 38.9653 1.73737 0.868687 0.495361i \(-0.164964\pi\)
0.868687 + 0.495361i \(0.164964\pi\)
\(504\) 0 0
\(505\) 9.09922 0.404910
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.2941 1.25412 0.627058 0.778973i \(-0.284259\pi\)
0.627058 + 0.778973i \(0.284259\pi\)
\(510\) 0 0
\(511\) −35.6885 5.47503i −1.57877 0.242201i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.6084 1.08437
\(516\) 0 0
\(517\) 0.264676 0.458433i 0.0116405 0.0201619i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.98150 10.3603i 0.262054 0.453892i −0.704733 0.709472i \(-0.748933\pi\)
0.966788 + 0.255581i \(0.0822667\pi\)
\(522\) 0 0
\(523\) 3.15056 + 5.45693i 0.137764 + 0.238615i 0.926650 0.375925i \(-0.122675\pi\)
−0.788886 + 0.614540i \(0.789342\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.88190 −0.0819767
\(528\) 0 0
\(529\) −22.8415 −0.993108
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.4758 + 28.5369i 0.713645 + 1.23607i
\(534\) 0 0
\(535\) 5.72625 + 9.91815i 0.247567 + 0.428799i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.41948 + 5.89399i −0.276507 + 0.253872i
\(540\) 0 0
\(541\) 9.88191 + 17.1160i 0.424857 + 0.735873i 0.996407 0.0846937i \(-0.0269912\pi\)
−0.571550 + 0.820567i \(0.693658\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.0987 + 24.4197i −0.603923 + 1.04602i
\(546\) 0 0
\(547\) −21.6125 37.4340i −0.924085 1.60056i −0.793026 0.609188i \(-0.791496\pi\)
−0.131059 0.991375i \(-0.541838\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.1114 26.1737i 0.643767 1.11504i
\(552\) 0 0
\(553\) 14.4707 + 2.21997i 0.615357 + 0.0944029i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0838 24.3938i 0.596748 1.03360i −0.396550 0.918013i \(-0.629793\pi\)
0.993298 0.115584i \(-0.0368740\pi\)
\(558\) 0 0
\(559\) −19.3137 −0.816884
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.8472 22.2520i −0.541445 0.937810i −0.998821 0.0485366i \(-0.984544\pi\)
0.457377 0.889273i \(-0.348789\pi\)
\(564\) 0 0
\(565\) 11.3976 19.7411i 0.479499 0.830516i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.7441 30.7336i 0.743870 1.28842i −0.206851 0.978373i \(-0.566321\pi\)
0.950721 0.310048i \(-0.100345\pi\)
\(570\) 0 0
\(571\) 10.8412 + 18.7775i 0.453689 + 0.785813i 0.998612 0.0526737i \(-0.0167743\pi\)
−0.544923 + 0.838486i \(0.683441\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.862754 0.0359793
\(576\) 0 0
\(577\) −7.60727 + 13.1762i −0.316695 + 0.548531i −0.979796 0.199998i \(-0.935906\pi\)
0.663102 + 0.748529i \(0.269240\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −26.6018 + 33.1786i −1.10363 + 1.37648i
\(582\) 0 0
\(583\) 0.580553 1.00555i 0.0240440 0.0416455i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.1924 33.2423i −0.792157 1.37206i −0.924629 0.380869i \(-0.875625\pi\)
0.132472 0.991187i \(-0.457708\pi\)
\(588\) 0 0
\(589\) −1.36606 + 2.36608i −0.0562875 + 0.0974928i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.25559 + 16.0311i 0.380081 + 0.658320i 0.991074 0.133316i \(-0.0425626\pi\)
−0.610992 + 0.791637i \(0.709229\pi\)
\(594\) 0 0
\(595\) 14.3223 + 2.19721i 0.587159 + 0.0900770i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.8413 + 18.7776i 0.442962 + 0.767233i 0.997908 0.0646536i \(-0.0205942\pi\)
−0.554946 + 0.831887i \(0.687261\pi\)
\(600\) 0 0
\(601\) 3.95776 + 6.85505i 0.161441 + 0.279623i 0.935386 0.353630i \(-0.115053\pi\)
−0.773945 + 0.633253i \(0.781719\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.9059 0.646665
\(606\) 0 0
\(607\) −35.9247 −1.45814 −0.729068 0.684441i \(-0.760046\pi\)
−0.729068 + 0.684441i \(0.760046\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.833539 1.44373i −0.0337214 0.0584072i
\(612\) 0 0
\(613\) −1.60252 + 2.77565i −0.0647253 + 0.112108i −0.896572 0.442898i \(-0.853950\pi\)
0.831847 + 0.555005i \(0.187284\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.9357 + 27.6015i −0.641549 + 1.11120i 0.343538 + 0.939139i \(0.388374\pi\)
−0.985087 + 0.172056i \(0.944959\pi\)
\(618\) 0 0
\(619\) 20.9726 0.842959 0.421480 0.906838i \(-0.361511\pi\)
0.421480 + 0.906838i \(0.361511\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 19.9853 24.9262i 0.800692 0.998647i
\(624\) 0 0
\(625\) −9.46924 −0.378769
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.7102 0.706153
\(630\) 0 0
\(631\) −26.4435 −1.05270 −0.526349 0.850268i \(-0.676440\pi\)
−0.526349 + 0.850268i \(0.676440\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.8253 0.707377
\(636\) 0 0
\(637\) 5.96663 + 26.7891i 0.236407 + 1.06142i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.9618 1.10443 0.552213 0.833703i \(-0.313783\pi\)
0.552213 + 0.833703i \(0.313783\pi\)
\(642\) 0 0
\(643\) 6.12936 10.6164i 0.241718 0.418669i −0.719485 0.694508i \(-0.755622\pi\)
0.961204 + 0.275839i \(0.0889556\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.49923 7.79290i 0.176883 0.306371i −0.763928 0.645301i \(-0.776732\pi\)
0.940811 + 0.338931i \(0.110065\pi\)
\(648\) 0 0
\(649\) −3.76640 6.52360i −0.147844 0.256074i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.7901 0.891844 0.445922 0.895072i \(-0.352876\pi\)
0.445922 + 0.895072i \(0.352876\pi\)
\(654\) 0 0
\(655\) 37.6418 1.47079
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.3311 33.4824i −0.753033 1.30429i −0.946347 0.323154i \(-0.895257\pi\)
0.193314 0.981137i \(-0.438076\pi\)
\(660\) 0 0
\(661\) 5.75399 + 9.96621i 0.223804 + 0.387641i 0.955960 0.293497i \(-0.0948190\pi\)
−0.732156 + 0.681137i \(0.761486\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.1590 16.4124i 0.510286 0.636444i
\(666\) 0 0
\(667\) −1.27362 2.20597i −0.0493147 0.0854156i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.35511 + 11.0074i −0.245336 + 0.424935i
\(672\) 0 0
\(673\) −10.6642 18.4709i −0.411075 0.712002i 0.583933 0.811802i \(-0.301513\pi\)
−0.995008 + 0.0997997i \(0.968180\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.8799 24.0407i 0.533449 0.923961i −0.465788 0.884896i \(-0.654229\pi\)
0.999237 0.0390641i \(-0.0124377\pi\)
\(678\) 0 0
\(679\) −19.3984 + 24.1943i −0.744443 + 0.928491i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.66854 + 15.0143i −0.331692 + 0.574508i −0.982844 0.184440i \(-0.940953\pi\)
0.651151 + 0.758948i \(0.274286\pi\)
\(684\) 0 0
\(685\) 30.2194 1.15462
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.82832 3.16675i −0.0696535 0.120643i
\(690\) 0 0
\(691\) 19.8023 34.2986i 0.753315 1.30478i −0.192892 0.981220i \(-0.561787\pi\)
0.946207 0.323560i \(-0.104880\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.960788 1.66413i 0.0364448 0.0631242i
\(696\) 0 0
\(697\) 13.6730 + 23.6824i 0.517903 + 0.897035i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.28469 −0.275139 −0.137570 0.990492i \(-0.543929\pi\)
−0.137570 + 0.990492i \(0.543929\pi\)
\(702\) 0 0
\(703\) 12.8558 22.2668i 0.484864 0.839809i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.19052 + 13.3280i 0.195210 + 0.501251i
\(708\) 0 0
\(709\) −6.00541 + 10.4017i −0.225538 + 0.390643i −0.956481 0.291796i \(-0.905747\pi\)
0.730943 + 0.682439i \(0.239081\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.115134 + 0.199418i 0.00431181 + 0.00746827i
\(714\) 0 0
\(715\) −4.10800 + 7.11526i −0.153630 + 0.266096i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.15819 3.73809i −0.0804868 0.139407i 0.822972 0.568081i \(-0.192314\pi\)
−0.903459 + 0.428674i \(0.858981\pi\)
\(720\) 0 0
\(721\) 14.0375 + 36.0449i 0.522783 + 1.34238i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.93210 12.0067i −0.257452 0.445919i
\(726\) 0 0
\(727\) −10.2483 17.7506i −0.380090 0.658334i 0.610985 0.791642i \(-0.290774\pi\)
−0.991075 + 0.133308i \(0.957440\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0282 −0.592825
\(732\) 0 0
\(733\) 25.3322 0.935666 0.467833 0.883817i \(-0.345035\pi\)
0.467833 + 0.883817i \(0.345035\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.86356 10.1560i −0.215987 0.374100i
\(738\) 0 0
\(739\) 6.63391 11.4903i 0.244032 0.422676i −0.717827 0.696222i \(-0.754863\pi\)
0.961859 + 0.273545i \(0.0881964\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.6116 39.1644i 0.829538 1.43680i −0.0688624 0.997626i \(-0.521937\pi\)
0.898401 0.439176i \(-0.144730\pi\)
\(744\) 0 0
\(745\) 29.7217 1.08892
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.2611 + 14.0451i −0.411471 + 0.513199i
\(750\) 0 0
\(751\) 28.3797 1.03559 0.517795 0.855505i \(-0.326753\pi\)
0.517795 + 0.855505i \(0.326753\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.6435 −0.933263
\(756\) 0 0
\(757\) 5.08483 0.184811 0.0924056 0.995721i \(-0.470544\pi\)
0.0924056 + 0.995721i \(0.470544\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −37.7225 −1.36744 −0.683720 0.729745i \(-0.739639\pi\)
−0.683720 + 0.729745i \(0.739639\pi\)
\(762\) 0 0
\(763\) −43.8110 6.72111i −1.58606 0.243321i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.7229 −0.856583
\(768\) 0 0
\(769\) 11.8729 20.5644i 0.428147 0.741572i −0.568562 0.822641i \(-0.692500\pi\)
0.996709 + 0.0810688i \(0.0258333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5347 + 33.8351i −0.702614 + 1.21696i 0.264932 + 0.964267i \(0.414650\pi\)
−0.967546 + 0.252696i \(0.918683\pi\)
\(774\) 0 0
\(775\) 0.626657 + 1.08540i 0.0225102 + 0.0389888i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 39.7008 1.42243
\(780\) 0 0
\(781\) 10.5402 0.377159
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.4697 19.8661i −0.409370 0.709050i
\(786\) 0 0
\(787\) 1.90458 + 3.29882i 0.0678908 + 0.117590i 0.897973 0.440051i \(-0.145040\pi\)
−0.830082 + 0.557642i \(0.811706\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 35.4173 + 5.43342i 1.25929 + 0.193190i
\(792\) 0 0
\(793\) 20.0140 + 34.6653i 0.710718 + 1.23100i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.8239 18.7476i 0.383404 0.664075i −0.608143 0.793828i \(-0.708085\pi\)
0.991546 + 0.129753i \(0.0414184\pi\)
\(798\) 0 0
\(799\) −0.691743 1.19813i −0.0244721 0.0423870i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.49500 14.7138i 0.299782 0.519238i
\(804\) 0 0
\(805\) −0.643408 1.65212i −0.0226771 0.0582294i
\(806\) 0 0