Properties

Label 3024.2.t.l.1873.3
Level $3024$
Weight $2$
Character 3024.1873
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.3
Character \(\chi\) \(=\) 3024.1873
Dual form 3024.2.t.l.289.3

$q$-expansion

\(f(q)\) \(=\) \(q-1.85591 q^{5} +(2.60465 + 0.464545i) q^{7} +O(q^{10})\) \(q-1.85591 q^{5} +(2.60465 + 0.464545i) q^{7} -2.57601 q^{11} +(2.82227 - 4.88832i) q^{13} +(-3.57951 + 6.19989i) q^{17} +(-0.636599 - 1.10262i) q^{19} +0.241277 q^{23} -1.55558 q^{25} +(-0.923571 - 1.59967i) q^{29} +(-1.49552 - 2.59031i) q^{31} +(-4.83401 - 0.862156i) q^{35} +(0.338260 + 0.585884i) q^{37} +(0.733933 - 1.27121i) q^{41} +(-4.14269 - 7.17535i) q^{43} +(6.15723 - 10.6646i) q^{47} +(6.56840 + 2.41995i) q^{49} +(-3.35508 + 5.81117i) q^{53} +4.78085 q^{55} +(-1.04139 - 1.80375i) q^{59} +(-6.47973 + 11.2232i) q^{61} +(-5.23789 + 9.07230i) q^{65} +(-2.41551 - 4.18379i) q^{67} -1.53621 q^{71} +(-6.55954 + 11.3615i) q^{73} +(-6.70960 - 1.19667i) q^{77} +(-1.86009 + 3.22177i) q^{79} +(-3.00173 - 5.19915i) q^{83} +(6.64326 - 11.5065i) q^{85} +(-6.60349 - 11.4376i) q^{89} +(9.62187 - 11.4213i) q^{91} +(1.18147 + 2.04637i) q^{95} +(6.40860 + 11.1000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q + 6q^{5} - 7q^{7} + O(q^{10}) \) \( 22q + 6q^{5} - 7q^{7} + 6q^{11} - 3q^{13} - 7q^{17} + q^{19} - 4q^{23} + 20q^{25} - 9q^{29} + 4q^{31} + 14q^{35} + 2q^{37} - 16q^{41} + 5q^{47} - 15q^{49} - 11q^{53} - 22q^{55} - 19q^{59} - 13q^{61} - 13q^{65} - 26q^{67} - 48q^{71} - 35q^{73} + 4q^{77} - 10q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} + 12q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.85591 −0.829990 −0.414995 0.909824i \(-0.636217\pi\)
−0.414995 + 0.909824i \(0.636217\pi\)
\(6\) 0 0
\(7\) 2.60465 + 0.464545i 0.984465 + 0.175582i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.57601 −0.776696 −0.388348 0.921513i \(-0.626954\pi\)
−0.388348 + 0.921513i \(0.626954\pi\)
\(12\) 0 0
\(13\) 2.82227 4.88832i 0.782757 1.35578i −0.147573 0.989051i \(-0.547146\pi\)
0.930330 0.366724i \(-0.119521\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.57951 + 6.19989i −0.868158 + 1.50369i −0.00428199 + 0.999991i \(0.501363\pi\)
−0.863876 + 0.503704i \(0.831970\pi\)
\(18\) 0 0
\(19\) −0.636599 1.10262i −0.146046 0.252959i 0.783717 0.621118i \(-0.213321\pi\)
−0.929763 + 0.368160i \(0.879988\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.241277 0.0503098 0.0251549 0.999684i \(-0.491992\pi\)
0.0251549 + 0.999684i \(0.491992\pi\)
\(24\) 0 0
\(25\) −1.55558 −0.311116
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.923571 1.59967i −0.171503 0.297051i 0.767443 0.641118i \(-0.221529\pi\)
−0.938945 + 0.344066i \(0.888196\pi\)
\(30\) 0 0
\(31\) −1.49552 2.59031i −0.268602 0.465233i 0.699899 0.714242i \(-0.253228\pi\)
−0.968501 + 0.249009i \(0.919895\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.83401 0.862156i −0.817096 0.145731i
\(36\) 0 0
\(37\) 0.338260 + 0.585884i 0.0556097 + 0.0963188i 0.892490 0.451067i \(-0.148956\pi\)
−0.836880 + 0.547386i \(0.815623\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.733933 1.27121i 0.114621 0.198529i −0.803007 0.595969i \(-0.796768\pi\)
0.917628 + 0.397440i \(0.130101\pi\)
\(42\) 0 0
\(43\) −4.14269 7.17535i −0.631754 1.09423i −0.987193 0.159531i \(-0.949002\pi\)
0.355439 0.934700i \(-0.384331\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.15723 10.6646i 0.898124 1.55560i 0.0682346 0.997669i \(-0.478263\pi\)
0.829890 0.557928i \(-0.188403\pi\)
\(48\) 0 0
\(49\) 6.56840 + 2.41995i 0.938342 + 0.345708i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.35508 + 5.81117i −0.460856 + 0.798226i −0.999004 0.0446243i \(-0.985791\pi\)
0.538148 + 0.842851i \(0.319124\pi\)
\(54\) 0 0
\(55\) 4.78085 0.644650
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.04139 1.80375i −0.135578 0.234828i 0.790240 0.612797i \(-0.209956\pi\)
−0.925818 + 0.377969i \(0.876622\pi\)
\(60\) 0 0
\(61\) −6.47973 + 11.2232i −0.829644 + 1.43699i 0.0686730 + 0.997639i \(0.478123\pi\)
−0.898317 + 0.439347i \(0.855210\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.23789 + 9.07230i −0.649681 + 1.12528i
\(66\) 0 0
\(67\) −2.41551 4.18379i −0.295102 0.511131i 0.679907 0.733298i \(-0.262020\pi\)
−0.975009 + 0.222167i \(0.928687\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.53621 −0.182314 −0.0911572 0.995837i \(-0.529057\pi\)
−0.0911572 + 0.995837i \(0.529057\pi\)
\(72\) 0 0
\(73\) −6.55954 + 11.3615i −0.767736 + 1.32976i 0.171052 + 0.985262i \(0.445283\pi\)
−0.938788 + 0.344496i \(0.888050\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.70960 1.19667i −0.764630 0.136373i
\(78\) 0 0
\(79\) −1.86009 + 3.22177i −0.209277 + 0.362478i −0.951487 0.307689i \(-0.900444\pi\)
0.742210 + 0.670167i \(0.233778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.00173 5.19915i −0.329483 0.570681i 0.652926 0.757421i \(-0.273541\pi\)
−0.982409 + 0.186740i \(0.940208\pi\)
\(84\) 0 0
\(85\) 6.64326 11.5065i 0.720563 1.24805i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.60349 11.4376i −0.699968 1.21238i −0.968477 0.249103i \(-0.919864\pi\)
0.268509 0.963277i \(-0.413469\pi\)
\(90\) 0 0
\(91\) 9.62187 11.4213i 1.00865 1.19728i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.18147 + 2.04637i 0.121217 + 0.209953i
\(96\) 0 0
\(97\) 6.40860 + 11.1000i 0.650695 + 1.12704i 0.982955 + 0.183848i \(0.0588556\pi\)
−0.332260 + 0.943188i \(0.607811\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.2013 −1.21408 −0.607039 0.794672i \(-0.707643\pi\)
−0.607039 + 0.794672i \(0.707643\pi\)
\(102\) 0 0
\(103\) −13.6433 −1.34431 −0.672155 0.740411i \(-0.734631\pi\)
−0.672155 + 0.740411i \(0.734631\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.48002 11.2237i −0.626448 1.08504i −0.988259 0.152788i \(-0.951175\pi\)
0.361811 0.932251i \(-0.382158\pi\)
\(108\) 0 0
\(109\) 7.70089 13.3383i 0.737612 1.27758i −0.215956 0.976403i \(-0.569287\pi\)
0.953568 0.301178i \(-0.0973799\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.73446 13.3965i 0.727597 1.26023i −0.230299 0.973120i \(-0.573971\pi\)
0.957896 0.287115i \(-0.0926961\pi\)
\(114\) 0 0
\(115\) −0.447790 −0.0417566
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.2035 + 14.4857i −1.11869 + 1.32790i
\(120\) 0 0
\(121\) −4.36418 −0.396744
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1666 1.08821
\(126\) 0 0
\(127\) 3.19404 0.283425 0.141713 0.989908i \(-0.454739\pi\)
0.141713 + 0.989908i \(0.454739\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0868 1.23077 0.615383 0.788229i \(-0.289002\pi\)
0.615383 + 0.788229i \(0.289002\pi\)
\(132\) 0 0
\(133\) −1.14590 3.16767i −0.0993620 0.274672i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.6964 −1.17016 −0.585079 0.810976i \(-0.698937\pi\)
−0.585079 + 0.810976i \(0.698937\pi\)
\(138\) 0 0
\(139\) 4.94131 8.55859i 0.419116 0.725931i −0.576735 0.816932i \(-0.695673\pi\)
0.995851 + 0.0910010i \(0.0290067\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.27019 + 12.5923i −0.607964 + 1.05302i
\(144\) 0 0
\(145\) 1.71407 + 2.96885i 0.142346 + 0.246550i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.92029 0.321163 0.160581 0.987023i \(-0.448663\pi\)
0.160581 + 0.987023i \(0.448663\pi\)
\(150\) 0 0
\(151\) −19.5784 −1.59327 −0.796634 0.604462i \(-0.793388\pi\)
−0.796634 + 0.604462i \(0.793388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.77555 + 4.80739i 0.222937 + 0.386139i
\(156\) 0 0
\(157\) −7.39637 12.8109i −0.590295 1.02242i −0.994193 0.107616i \(-0.965678\pi\)
0.403898 0.914804i \(-0.367655\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.628443 + 0.112084i 0.0495282 + 0.00883347i
\(162\) 0 0
\(163\) −7.54686 13.0715i −0.591116 1.02384i −0.994082 0.108628i \(-0.965354\pi\)
0.402967 0.915215i \(-0.367979\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.92946 3.34192i 0.149306 0.258605i −0.781665 0.623698i \(-0.785629\pi\)
0.930971 + 0.365093i \(0.118963\pi\)
\(168\) 0 0
\(169\) −9.43043 16.3340i −0.725418 1.25646i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.325786 0.564277i 0.0247690 0.0429012i −0.853375 0.521297i \(-0.825448\pi\)
0.878144 + 0.478396i \(0.158782\pi\)
\(174\) 0 0
\(175\) −4.05174 0.722638i −0.306283 0.0546263i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.9059 18.8896i 0.815145 1.41187i −0.0940781 0.995565i \(-0.529990\pi\)
0.909223 0.416308i \(-0.136676\pi\)
\(180\) 0 0
\(181\) −25.0338 −1.86075 −0.930374 0.366613i \(-0.880517\pi\)
−0.930374 + 0.366613i \(0.880517\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.627782 1.08735i −0.0461555 0.0799436i
\(186\) 0 0
\(187\) 9.22085 15.9710i 0.674295 1.16791i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.33036 + 7.50041i −0.313334 + 0.542711i −0.979082 0.203466i \(-0.934779\pi\)
0.665748 + 0.746177i \(0.268113\pi\)
\(192\) 0 0
\(193\) −0.808322 1.40006i −0.0581843 0.100778i 0.835466 0.549542i \(-0.185198\pi\)
−0.893650 + 0.448764i \(0.851864\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.7746 −0.767659 −0.383829 0.923404i \(-0.625395\pi\)
−0.383829 + 0.923404i \(0.625395\pi\)
\(198\) 0 0
\(199\) −2.38768 + 4.13558i −0.169258 + 0.293163i −0.938159 0.346204i \(-0.887470\pi\)
0.768901 + 0.639368i \(0.220804\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.66246 4.59562i −0.116682 0.322549i
\(204\) 0 0
\(205\) −1.36212 + 2.35925i −0.0951343 + 0.164777i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.63988 + 2.84036i 0.113433 + 0.196472i
\(210\) 0 0
\(211\) −2.42787 + 4.20520i −0.167142 + 0.289498i −0.937414 0.348218i \(-0.886787\pi\)
0.770272 + 0.637715i \(0.220120\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.68848 + 13.3168i 0.524350 + 0.908200i
\(216\) 0 0
\(217\) −2.69198 7.44158i −0.182743 0.505167i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 20.2047 + 34.9955i 1.35911 + 2.35406i
\(222\) 0 0
\(223\) −3.86187 6.68896i −0.258610 0.447926i 0.707260 0.706954i \(-0.249931\pi\)
−0.965870 + 0.259028i \(0.916598\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.9491 −0.925837 −0.462919 0.886401i \(-0.653198\pi\)
−0.462919 + 0.886401i \(0.653198\pi\)
\(228\) 0 0
\(229\) 1.60027 0.105749 0.0528745 0.998601i \(-0.483162\pi\)
0.0528745 + 0.998601i \(0.483162\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.69939 6.40753i −0.242355 0.419771i 0.719030 0.694979i \(-0.244587\pi\)
−0.961385 + 0.275208i \(0.911253\pi\)
\(234\) 0 0
\(235\) −11.4273 + 19.7926i −0.745434 + 1.29113i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.25117 + 2.16709i −0.0809316 + 0.140178i −0.903650 0.428271i \(-0.859123\pi\)
0.822719 + 0.568449i \(0.192456\pi\)
\(240\) 0 0
\(241\) 4.24297 0.273314 0.136657 0.990618i \(-0.456364\pi\)
0.136657 + 0.990618i \(0.456364\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.1904 4.49123i −0.778815 0.286934i
\(246\) 0 0
\(247\) −7.18661 −0.457273
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.5381 −0.854516 −0.427258 0.904130i \(-0.640520\pi\)
−0.427258 + 0.904130i \(0.640520\pi\)
\(252\) 0 0
\(253\) −0.621532 −0.0390754
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.15495 0.383935 0.191968 0.981401i \(-0.438513\pi\)
0.191968 + 0.981401i \(0.438513\pi\)
\(258\) 0 0
\(259\) 0.608880 + 1.68316i 0.0378340 + 0.104586i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −25.3411 −1.56260 −0.781300 0.624156i \(-0.785443\pi\)
−0.781300 + 0.624156i \(0.785443\pi\)
\(264\) 0 0
\(265\) 6.22675 10.7850i 0.382506 0.662520i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.42092 9.38931i 0.330519 0.572476i −0.652095 0.758138i \(-0.726109\pi\)
0.982614 + 0.185662i \(0.0594428\pi\)
\(270\) 0 0
\(271\) 15.0184 + 26.0127i 0.912306 + 1.58016i 0.810799 + 0.585325i \(0.199033\pi\)
0.101507 + 0.994835i \(0.467634\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00719 0.241643
\(276\) 0 0
\(277\) 19.7629 1.18744 0.593720 0.804672i \(-0.297659\pi\)
0.593720 + 0.804672i \(0.297659\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.98596 + 6.90388i 0.237782 + 0.411851i 0.960078 0.279734i \(-0.0902462\pi\)
−0.722295 + 0.691585i \(0.756913\pi\)
\(282\) 0 0
\(283\) 11.6063 + 20.1028i 0.689926 + 1.19499i 0.971861 + 0.235553i \(0.0756901\pi\)
−0.281936 + 0.959433i \(0.590977\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.50217 2.97011i 0.147698 0.175320i
\(288\) 0 0
\(289\) −17.1258 29.6627i −1.00740 1.74486i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.8556 + 20.5345i −0.692612 + 1.19964i 0.278367 + 0.960475i \(0.410207\pi\)
−0.970979 + 0.239164i \(0.923126\pi\)
\(294\) 0 0
\(295\) 1.93274 + 3.34760i 0.112528 + 0.194905i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.680950 1.17944i 0.0393803 0.0682088i
\(300\) 0 0
\(301\) −7.45698 20.6137i −0.429813 1.18816i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.0258 20.8293i 0.688597 1.19268i
\(306\) 0 0
\(307\) −3.87810 −0.221335 −0.110668 0.993857i \(-0.535299\pi\)
−0.110668 + 0.993857i \(0.535299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.46220 + 5.99670i 0.196323 + 0.340042i 0.947333 0.320249i \(-0.103767\pi\)
−0.751010 + 0.660290i \(0.770433\pi\)
\(312\) 0 0
\(313\) −15.1157 + 26.1811i −0.854388 + 1.47984i 0.0228236 + 0.999740i \(0.492734\pi\)
−0.877212 + 0.480104i \(0.840599\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.68699 8.11811i 0.263248 0.455959i −0.703855 0.710343i \(-0.748540\pi\)
0.967103 + 0.254385i \(0.0818730\pi\)
\(318\) 0 0
\(319\) 2.37913 + 4.12077i 0.133205 + 0.230719i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.11484 0.507163
\(324\) 0 0
\(325\) −4.39027 + 7.60418i −0.243529 + 0.421804i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20.9916 24.9173i 1.15731 1.37374i
\(330\) 0 0
\(331\) 13.7720 23.8539i 0.756979 1.31113i −0.187405 0.982283i \(-0.560008\pi\)
0.944384 0.328844i \(-0.106659\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.48298 + 7.76475i 0.244931 + 0.424234i
\(336\) 0 0
\(337\) −3.41673 + 5.91796i −0.186121 + 0.322372i −0.943954 0.330078i \(-0.892925\pi\)
0.757832 + 0.652449i \(0.226258\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.85246 + 6.67266i 0.208622 + 0.361345i
\(342\) 0 0
\(343\) 15.9842 + 9.35445i 0.863065 + 0.505093i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0959 17.4867i −0.541979 0.938735i −0.998790 0.0491714i \(-0.984342\pi\)
0.456812 0.889564i \(-0.348991\pi\)
\(348\) 0 0
\(349\) −4.25154 7.36388i −0.227580 0.394180i 0.729511 0.683970i \(-0.239748\pi\)
−0.957090 + 0.289790i \(0.906415\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.70904 −0.250637 −0.125318 0.992117i \(-0.539995\pi\)
−0.125318 + 0.992117i \(0.539995\pi\)
\(354\) 0 0
\(355\) 2.85107 0.151319
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.03357 + 10.4504i 0.318440 + 0.551554i 0.980163 0.198195i \(-0.0635079\pi\)
−0.661723 + 0.749748i \(0.730175\pi\)
\(360\) 0 0
\(361\) 8.68948 15.0506i 0.457341 0.792138i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1739 21.0859i 0.637213 1.10369i
\(366\) 0 0
\(367\) −0.960711 −0.0501487 −0.0250744 0.999686i \(-0.507982\pi\)
−0.0250744 + 0.999686i \(0.507982\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.4384 + 13.5775i −0.593850 + 0.704908i
\(372\) 0 0
\(373\) −7.04998 −0.365034 −0.182517 0.983203i \(-0.558425\pi\)
−0.182517 + 0.983203i \(0.558425\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.4263 −0.536980
\(378\) 0 0
\(379\) 37.1330 1.90739 0.953697 0.300769i \(-0.0972434\pi\)
0.953697 + 0.300769i \(0.0972434\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.1975 1.64522 0.822608 0.568609i \(-0.192518\pi\)
0.822608 + 0.568609i \(0.192518\pi\)
\(384\) 0 0
\(385\) 12.4524 + 2.22092i 0.634635 + 0.113189i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.7426 1.30520 0.652600 0.757702i \(-0.273678\pi\)
0.652600 + 0.757702i \(0.273678\pi\)
\(390\) 0 0
\(391\) −0.863654 + 1.49589i −0.0436769 + 0.0756506i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.45217 5.97933i 0.173697 0.300853i
\(396\) 0 0
\(397\) 9.44903 + 16.3662i 0.474233 + 0.821396i 0.999565 0.0295016i \(-0.00939202\pi\)
−0.525332 + 0.850898i \(0.676059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.2039 −0.759245 −0.379622 0.925142i \(-0.623946\pi\)
−0.379622 + 0.925142i \(0.623946\pi\)
\(402\) 0 0
\(403\) −16.8830 −0.841002
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.871362 1.50924i −0.0431918 0.0748104i
\(408\) 0 0
\(409\) 14.9729 + 25.9339i 0.740363 + 1.28235i 0.952330 + 0.305070i \(0.0986798\pi\)
−0.211967 + 0.977277i \(0.567987\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.87454 5.18191i −0.0922403 0.254985i
\(414\) 0 0
\(415\) 5.57096 + 9.64918i 0.273468 + 0.473660i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.2660 + 21.2453i −0.599231 + 1.03790i 0.393704 + 0.919237i \(0.371194\pi\)
−0.992935 + 0.118661i \(0.962140\pi\)
\(420\) 0 0
\(421\) −2.37791 4.11866i −0.115892 0.200731i 0.802244 0.596996i \(-0.203639\pi\)
−0.918136 + 0.396265i \(0.870306\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.56822 9.64444i 0.270098 0.467824i
\(426\) 0 0
\(427\) −22.0911 + 26.2224i −1.06906 + 1.26899i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.36446 2.36331i 0.0657237 0.113837i −0.831291 0.555837i \(-0.812398\pi\)
0.897015 + 0.442000i \(0.145731\pi\)
\(432\) 0 0
\(433\) 14.5592 0.699672 0.349836 0.936811i \(-0.386237\pi\)
0.349836 + 0.936811i \(0.386237\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.153597 0.266037i −0.00734753 0.0127263i
\(438\) 0 0
\(439\) −1.44066 + 2.49529i −0.0687587 + 0.119094i −0.898355 0.439270i \(-0.855237\pi\)
0.829596 + 0.558363i \(0.188571\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.4865 + 21.6273i −0.593254 + 1.02755i 0.400537 + 0.916281i \(0.368824\pi\)
−0.993791 + 0.111265i \(0.964510\pi\)
\(444\) 0 0
\(445\) 12.2555 + 21.2272i 0.580967 + 1.00626i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.99154 0.141180 0.0705898 0.997505i \(-0.477512\pi\)
0.0705898 + 0.997505i \(0.477512\pi\)
\(450\) 0 0
\(451\) −1.89062 + 3.27464i −0.0890257 + 0.154197i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.8574 + 21.1969i −0.837166 + 0.993727i
\(456\) 0 0
\(457\) 12.8085 22.1850i 0.599158 1.03777i −0.393788 0.919201i \(-0.628835\pi\)
0.992946 0.118571i \(-0.0378312\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.45759 + 11.1849i 0.300760 + 0.520931i 0.976308 0.216384i \(-0.0694264\pi\)
−0.675548 + 0.737316i \(0.736093\pi\)
\(462\) 0 0
\(463\) 12.2457 21.2102i 0.569108 0.985724i −0.427547 0.903993i \(-0.640622\pi\)
0.996654 0.0817305i \(-0.0260447\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.4087 18.0283i −0.481655 0.834251i 0.518123 0.855306i \(-0.326631\pi\)
−0.999778 + 0.0210550i \(0.993297\pi\)
\(468\) 0 0
\(469\) −4.34800 12.0194i −0.200772 0.555005i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.6716 + 18.4838i 0.490681 + 0.849884i
\(474\) 0 0
\(475\) 0.990281 + 1.71522i 0.0454372 + 0.0786996i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.4873 1.25592 0.627962 0.778244i \(-0.283889\pi\)
0.627962 + 0.778244i \(0.283889\pi\)
\(480\) 0 0
\(481\) 3.81865 0.174115
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.8938 20.6007i −0.540070 0.935429i
\(486\) 0 0
\(487\) 6.32927 10.9626i 0.286807 0.496763i −0.686239 0.727376i \(-0.740740\pi\)
0.973046 + 0.230613i \(0.0740730\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.40618 + 2.43557i −0.0634598 + 0.109916i −0.896010 0.444034i \(-0.853547\pi\)
0.832550 + 0.553950i \(0.186880\pi\)
\(492\) 0 0
\(493\) 13.2237 0.595566
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.00128 0.713638i −0.179482 0.0320110i
\(498\) 0 0
\(499\) 4.24205 0.189900 0.0949502 0.995482i \(-0.469731\pi\)
0.0949502 + 0.995482i \(0.469731\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.2162 0.990570 0.495285 0.868730i \(-0.335064\pi\)
0.495285 + 0.868730i \(0.335064\pi\)
\(504\) 0 0
\(505\) 22.6446 1.00767
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.85469 0.215180 0.107590 0.994195i \(-0.465687\pi\)
0.107590 + 0.994195i \(0.465687\pi\)
\(510\) 0 0
\(511\) −22.3632 + 26.5454i −0.989290 + 1.17430i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.3207 1.11576
\(516\) 0 0
\(517\) −15.8611 + 27.4722i −0.697569 + 1.20823i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.92316 + 13.7233i −0.347120 + 0.601229i −0.985737 0.168296i \(-0.946174\pi\)
0.638617 + 0.769525i \(0.279507\pi\)
\(522\) 0 0
\(523\) −10.7605 18.6377i −0.470524 0.814972i 0.528908 0.848679i \(-0.322602\pi\)
−0.999432 + 0.0337078i \(0.989268\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.4128 0.932758
\(528\) 0 0
\(529\) −22.9418 −0.997469
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.14271 7.17539i −0.179441 0.310801i
\(534\) 0 0
\(535\) 12.0264 + 20.8303i 0.519945 + 0.900572i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.9202 6.23382i −0.728806 0.268510i
\(540\) 0 0
\(541\) 7.55977 + 13.0939i 0.325020 + 0.562951i 0.981516 0.191378i \(-0.0612957\pi\)
−0.656497 + 0.754329i \(0.727962\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.2922 + 24.7548i −0.612211 + 1.06038i
\(546\) 0 0
\(547\) 19.4532 + 33.6939i 0.831757 + 1.44065i 0.896644 + 0.442753i \(0.145998\pi\)
−0.0648863 + 0.997893i \(0.520668\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.17589 + 2.03670i −0.0500945 + 0.0867662i
\(552\) 0 0
\(553\) −6.34154 + 7.52749i −0.269670 + 0.320101i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.37036 9.30173i 0.227549 0.394127i −0.729532 0.683947i \(-0.760262\pi\)
0.957081 + 0.289820i \(0.0935954\pi\)
\(558\) 0 0
\(559\) −46.7672 −1.97804
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.7380 + 20.3308i 0.494697 + 0.856840i 0.999981 0.00611281i \(-0.00194578\pi\)
−0.505285 + 0.862953i \(0.668612\pi\)
\(564\) 0 0
\(565\) −14.3545 + 24.8627i −0.603898 + 1.04598i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.9681 + 32.8537i −0.795183 + 1.37730i 0.127540 + 0.991833i \(0.459292\pi\)
−0.922723 + 0.385463i \(0.874042\pi\)
\(570\) 0 0
\(571\) −2.15815 3.73803i −0.0903158 0.156432i 0.817328 0.576172i \(-0.195454\pi\)
−0.907644 + 0.419741i \(0.862121\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.375326 −0.0156522
\(576\) 0 0
\(577\) −5.05923 + 8.76284i −0.210618 + 0.364802i −0.951908 0.306383i \(-0.900881\pi\)
0.741290 + 0.671185i \(0.234214\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.40322 14.9364i −0.224163 0.619667i
\(582\) 0 0
\(583\) 8.64272 14.9696i 0.357945 0.619979i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.10992 7.11859i −0.169635 0.293816i 0.768657 0.639661i \(-0.220925\pi\)
−0.938291 + 0.345846i \(0.887592\pi\)
\(588\) 0 0
\(589\) −1.90409 + 3.29797i −0.0784565 + 0.135891i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.8434 37.8339i −0.897002 1.55365i −0.831307 0.555814i \(-0.812407\pi\)
−0.0656957 0.997840i \(-0.520927\pi\)
\(594\) 0 0
\(595\) 22.6486 26.8842i 0.928504 1.10215i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.63946 + 13.2319i 0.312140 + 0.540642i 0.978825 0.204697i \(-0.0656209\pi\)
−0.666686 + 0.745339i \(0.732288\pi\)
\(600\) 0 0
\(601\) 7.65696 + 13.2622i 0.312334 + 0.540978i 0.978867 0.204497i \(-0.0655559\pi\)
−0.666533 + 0.745475i \(0.732223\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.09955 0.329293
\(606\) 0 0
\(607\) 2.66981 0.108364 0.0541821 0.998531i \(-0.482745\pi\)
0.0541821 + 0.998531i \(0.482745\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −34.7547 60.1970i −1.40603 2.43531i
\(612\) 0 0
\(613\) −13.5875 + 23.5343i −0.548796 + 0.950542i 0.449562 + 0.893249i \(0.351580\pi\)
−0.998357 + 0.0572929i \(0.981753\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.6058 30.4942i 0.708785 1.22765i −0.256524 0.966538i \(-0.582577\pi\)
0.965308 0.261113i \(-0.0840895\pi\)
\(618\) 0 0
\(619\) 31.2681 1.25677 0.628385 0.777902i \(-0.283716\pi\)
0.628385 + 0.777902i \(0.283716\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.8865 32.8585i −0.476223 1.31645i
\(624\) 0 0
\(625\) −14.8023 −0.592090
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.84322 −0.193112
\(630\) 0 0
\(631\) −15.5090 −0.617403 −0.308702 0.951159i \(-0.599894\pi\)
−0.308702 + 0.951159i \(0.599894\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.92787 −0.235240
\(636\) 0 0
\(637\) 30.3673 25.2786i 1.20320 1.00158i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.5310 1.32440 0.662198 0.749329i \(-0.269624\pi\)
0.662198 + 0.749329i \(0.269624\pi\)
\(642\) 0 0
\(643\) 10.2721 17.7918i 0.405093 0.701641i −0.589239 0.807958i \(-0.700573\pi\)
0.994332 + 0.106317i \(0.0339059\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.8855 + 29.2465i −0.663836 + 1.14980i 0.315763 + 0.948838i \(0.397739\pi\)
−0.979599 + 0.200960i \(0.935594\pi\)
\(648\) 0 0
\(649\) 2.68264 + 4.64647i 0.105303 + 0.182390i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.0115 −0.704845 −0.352423 0.935841i \(-0.614642\pi\)
−0.352423 + 0.935841i \(0.614642\pi\)
\(654\) 0 0
\(655\) −26.1438 −1.02152
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.42710 + 2.47180i 0.0555918 + 0.0962878i 0.892482 0.451083i \(-0.148962\pi\)
−0.836890 + 0.547371i \(0.815629\pi\)
\(660\) 0 0
\(661\) −7.02746 12.1719i −0.273337 0.473433i 0.696378 0.717676i \(-0.254794\pi\)
−0.969714 + 0.244243i \(0.921461\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.12669 + 5.87892i 0.0824695 + 0.227975i
\(666\) 0 0
\(667\) −0.222837 0.385964i −0.00862827 0.0149446i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.6918 28.9111i 0.644381 1.11610i
\(672\) 0 0
\(673\) −7.54157 13.0624i −0.290706 0.503518i 0.683271 0.730165i \(-0.260557\pi\)
−0.973977 + 0.226647i \(0.927223\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.1093 + 31.3663i −0.695998 + 1.20550i 0.273845 + 0.961774i \(0.411705\pi\)
−0.969843 + 0.243731i \(0.921629\pi\)
\(678\) 0 0
\(679\) 11.5357 + 31.8887i 0.442699 + 1.22378i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.84350 15.3174i 0.338387 0.586104i −0.645742 0.763555i \(-0.723452\pi\)
0.984130 + 0.177452i \(0.0567853\pi\)
\(684\) 0 0
\(685\) 25.4193 0.971220
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.9379 + 32.8014i 0.721477 + 1.24963i
\(690\) 0 0
\(691\) 11.2049 19.4074i 0.426253 0.738292i −0.570283 0.821448i \(-0.693167\pi\)
0.996537 + 0.0831559i \(0.0265000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.17064 + 15.8840i −0.347862 + 0.602515i
\(696\) 0 0
\(697\) 5.25424 + 9.10061i 0.199018 + 0.344710i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.1776 1.17756 0.588781 0.808293i \(-0.299608\pi\)
0.588781 + 0.808293i \(0.299608\pi\)
\(702\) 0 0
\(703\) 0.430672 0.745946i 0.0162431 0.0281339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.7802 5.66806i −1.19522 0.213170i
\(708\) 0 0
\(709\) 4.02492 6.97137i 0.151159 0.261815i −0.780495 0.625162i \(-0.785033\pi\)
0.931654 + 0.363347i \(0.118366\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.360834 0.624982i −0.0135133 0.0234058i
\(714\) 0 0
\(715\) 13.4929 23.3703i 0.504604 0.874000i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.9980 36.3696i −0.783093 1.35636i −0.930132 0.367226i \(-0.880308\pi\)
0.147039 0.989131i \(-0.453026\pi\)
\(720\) 0 0
\(721\) −35.5359 6.33791i −1.32343 0.236036i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.43669 + 2.48842i 0.0533573 + 0.0924176i
\(726\) 0 0
\(727\) −0.668774 1.15835i −0.0248035 0.0429609i 0.853357 0.521327i \(-0.174563\pi\)
−0.878161 + 0.478366i \(0.841229\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 59.3152 2.19385
\(732\) 0 0
\(733\) 29.4749 1.08868 0.544340 0.838865i \(-0.316780\pi\)
0.544340 + 0.838865i \(0.316780\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.22238 + 10.7775i 0.229204 + 0.396993i
\(738\) 0 0
\(739\) −9.52146 + 16.4916i −0.350252 + 0.606655i −0.986294 0.165000i \(-0.947238\pi\)
0.636041 + 0.771655i \(0.280571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.6613 37.5185i 0.794676 1.37642i −0.128369 0.991726i \(-0.540974\pi\)
0.923045 0.384693i \(-0.125693\pi\)
\(744\) 0 0
\(745\) −7.27573 −0.266562
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.6643 32.2441i −0.426203 1.17818i
\(750\) 0 0
\(751\) −34.8763 −1.27265 −0.636327 0.771420i \(-0.719547\pi\)
−0.636327 + 0.771420i \(0.719547\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 36.3358 1.32240
\(756\) 0 0
\(757\) 8.67255 0.315209 0.157605 0.987502i \(-0.449623\pi\)
0.157605 + 0.987502i \(0.449623\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.48977 0.199004 0.0995021 0.995037i \(-0.468275\pi\)
0.0995021 + 0.995037i \(0.468275\pi\)
\(762\) 0 0
\(763\) 26.2544 31.1643i 0.950473 1.12822i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.7564 −0.424499
\(768\) 0 0
\(769\) 1.81365 3.14134i 0.0654021 0.113280i −0.831470 0.555569i \(-0.812500\pi\)
0.896872 + 0.442290i \(0.145834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.96717 12.0675i 0.250592 0.434037i −0.713097 0.701065i \(-0.752708\pi\)
0.963689 + 0.267028i \(0.0860415\pi\)
\(774\) 0 0
\(775\) 2.32640 + 4.02944i 0.0835666 + 0.144742i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.86888 −0.0669597
\(780\) 0 0
\(781\) 3.95729 0.141603
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.7270 + 23.7759i 0.489939 + 0.848599i
\(786\) 0 0
\(787\) 8.78923 + 15.2234i 0.313302 + 0.542655i 0.979075 0.203499i \(-0.0652314\pi\)
−0.665773 + 0.746154i \(0.731898\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.3688 31.3001i 0.937567 1.11290i
\(792\) 0 0
\(793\) 36.5751 + 63.3499i 1.29882 + 2.24962i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.57971 + 9.66434i −0.197644 + 0.342329i −0.947764 0.318973i \(-0.896662\pi\)
0.750120 + 0.661301i \(0.229996\pi\)
\(798\) 0 0
\(799\) 44.0797 + 76.3483i 1.55943 + 2.70101i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16.8974 29.2672i 0.596297 1.03282i
\(804\) 0 0
\(805\) −1.16634 0.208019i −0.0411079 0.00733169i
\(806\) 0 0