Properties

Label 3024.2.t.d
Level $3024$
Weight $2$
Character orbit 3024.t
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{5} + ( 1 - 3 \zeta_{6} ) q^{7} +O(q^{10})\) \( q + q^{5} + ( 1 - 3 \zeta_{6} ) q^{7} + 5 q^{11} + ( 5 - 5 \zeta_{6} ) q^{13} + ( 3 - 3 \zeta_{6} ) q^{17} + \zeta_{6} q^{19} + 3 q^{23} -4 q^{25} -\zeta_{6} q^{29} + ( 1 - 3 \zeta_{6} ) q^{35} -3 \zeta_{6} q^{37} + ( -5 + 5 \zeta_{6} ) q^{41} -\zeta_{6} q^{43} + ( -8 + 3 \zeta_{6} ) q^{49} + ( -9 + 9 \zeta_{6} ) q^{53} + 5 q^{55} + ( 14 - 14 \zeta_{6} ) q^{61} + ( 5 - 5 \zeta_{6} ) q^{65} + 4 \zeta_{6} q^{67} -12 q^{71} + ( -3 + 3 \zeta_{6} ) q^{73} + ( 5 - 15 \zeta_{6} ) q^{77} + ( 8 - 8 \zeta_{6} ) q^{79} + 9 \zeta_{6} q^{83} + ( 3 - 3 \zeta_{6} ) q^{85} -13 \zeta_{6} q^{89} + ( -10 - 5 \zeta_{6} ) q^{91} + \zeta_{6} q^{95} + 9 \zeta_{6} q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} - q^{7} + O(q^{10}) \) \( 2q + 2q^{5} - q^{7} + 10q^{11} + 5q^{13} + 3q^{17} + q^{19} + 6q^{23} - 8q^{25} - q^{29} - q^{35} - 3q^{37} - 5q^{41} - q^{43} - 13q^{49} - 9q^{53} + 10q^{55} + 14q^{61} + 5q^{65} + 4q^{67} - 24q^{71} - 3q^{73} - 5q^{77} + 8q^{79} + 9q^{83} + 3q^{85} - 13q^{89} - 25q^{91} + q^{95} + 9q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 1.00000 0 −0.500000 + 2.59808i 0 0 0
1873.1 0 0 0 1.00000 0 −0.500000 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.t.d 2
3.b odd 2 1 1008.2.t.d 2
4.b odd 2 1 189.2.g.a 2
7.c even 3 1 3024.2.q.b 2
9.c even 3 1 3024.2.q.b 2
9.d odd 6 1 1008.2.q.c 2
12.b even 2 1 63.2.g.a 2
21.h odd 6 1 1008.2.q.c 2
28.d even 2 1 1323.2.g.a 2
28.f even 6 1 1323.2.f.b 2
28.f even 6 1 1323.2.h.a 2
28.g odd 6 1 189.2.h.a 2
28.g odd 6 1 1323.2.f.a 2
36.f odd 6 1 189.2.h.a 2
36.f odd 6 1 567.2.e.b 2
36.h even 6 1 63.2.h.a yes 2
36.h even 6 1 567.2.e.a 2
63.g even 3 1 inner 3024.2.t.d 2
63.n odd 6 1 1008.2.t.d 2
84.h odd 2 1 441.2.g.a 2
84.j odd 6 1 441.2.f.a 2
84.j odd 6 1 441.2.h.a 2
84.n even 6 1 63.2.h.a yes 2
84.n even 6 1 441.2.f.b 2
252.n even 6 1 1323.2.g.a 2
252.n even 6 1 3969.2.a.a 1
252.o even 6 1 63.2.g.a 2
252.o even 6 1 3969.2.a.d 1
252.r odd 6 1 441.2.f.a 2
252.s odd 6 1 441.2.h.a 2
252.u odd 6 1 567.2.e.b 2
252.u odd 6 1 1323.2.f.a 2
252.bb even 6 1 441.2.f.b 2
252.bb even 6 1 567.2.e.a 2
252.bi even 6 1 1323.2.h.a 2
252.bj even 6 1 1323.2.f.b 2
252.bl odd 6 1 189.2.g.a 2
252.bl odd 6 1 3969.2.a.c 1
252.bn odd 6 1 441.2.g.a 2
252.bn odd 6 1 3969.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.g.a 2 12.b even 2 1
63.2.g.a 2 252.o even 6 1
63.2.h.a yes 2 36.h even 6 1
63.2.h.a yes 2 84.n even 6 1
189.2.g.a 2 4.b odd 2 1
189.2.g.a 2 252.bl odd 6 1
189.2.h.a 2 28.g odd 6 1
189.2.h.a 2 36.f odd 6 1
441.2.f.a 2 84.j odd 6 1
441.2.f.a 2 252.r odd 6 1
441.2.f.b 2 84.n even 6 1
441.2.f.b 2 252.bb even 6 1
441.2.g.a 2 84.h odd 2 1
441.2.g.a 2 252.bn odd 6 1
441.2.h.a 2 84.j odd 6 1
441.2.h.a 2 252.s odd 6 1
567.2.e.a 2 36.h even 6 1
567.2.e.a 2 252.bb even 6 1
567.2.e.b 2 36.f odd 6 1
567.2.e.b 2 252.u odd 6 1
1008.2.q.c 2 9.d odd 6 1
1008.2.q.c 2 21.h odd 6 1
1008.2.t.d 2 3.b odd 2 1
1008.2.t.d 2 63.n odd 6 1
1323.2.f.a 2 28.g odd 6 1
1323.2.f.a 2 252.u odd 6 1
1323.2.f.b 2 28.f even 6 1
1323.2.f.b 2 252.bj even 6 1
1323.2.g.a 2 28.d even 2 1
1323.2.g.a 2 252.n even 6 1
1323.2.h.a 2 28.f even 6 1
1323.2.h.a 2 252.bi even 6 1
3024.2.q.b 2 7.c even 3 1
3024.2.q.b 2 9.c even 3 1
3024.2.t.d 2 1.a even 1 1 trivial
3024.2.t.d 2 63.g even 3 1 inner
3969.2.a.a 1 252.n even 6 1
3969.2.a.c 1 252.bl odd 6 1
3969.2.a.d 1 252.o even 6 1
3969.2.a.f 1 252.bn odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5} - 1 \)
\( T_{11} - 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 - T + 5 T^{2} )^{2} \)
$7$ \( 1 + T + 7 T^{2} \)
$11$ \( ( 1 - 5 T + 11 T^{2} )^{2} \)
$13$ \( ( 1 - 7 T + 13 T^{2} )( 1 + 2 T + 13 T^{2} ) \)
$17$ \( 1 - 3 T - 8 T^{2} - 51 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + 7 T + 19 T^{2} ) \)
$23$ \( ( 1 - 3 T + 23 T^{2} )^{2} \)
$29$ \( 1 + T - 28 T^{2} + 29 T^{3} + 841 T^{4} \)
$31$ \( 1 - 31 T^{2} + 961 T^{4} \)
$37$ \( 1 + 3 T - 28 T^{2} + 111 T^{3} + 1369 T^{4} \)
$41$ \( 1 + 5 T - 16 T^{2} + 205 T^{3} + 1681 T^{4} \)
$43$ \( 1 + T - 42 T^{2} + 43 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 47 T^{2} + 2209 T^{4} \)
$53$ \( 1 + 9 T + 28 T^{2} + 477 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 59 T^{2} + 3481 T^{4} \)
$61$ \( ( 1 - 13 T + 61 T^{2} )( 1 - T + 61 T^{2} ) \)
$67$ \( 1 - 4 T - 51 T^{2} - 268 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 12 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 3 T - 64 T^{2} + 219 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 8 T - 15 T^{2} - 632 T^{3} + 6241 T^{4} \)
$83$ \( 1 - 9 T - 2 T^{2} - 747 T^{3} + 6889 T^{4} \)
$89$ \( 1 + 13 T + 80 T^{2} + 1157 T^{3} + 7921 T^{4} \)
$97$ \( 1 - 9 T - 16 T^{2} - 873 T^{3} + 9409 T^{4} \)
show more
show less