Properties

Label 3024.2.r.e
Level $3024$
Weight $2$
Character orbit 3024.r
Analytic conductor $24.147$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{1} - \beta_{2} ) q^{5} + ( -1 + \beta_{1} ) q^{7} +O(q^{10})\) \( q + ( \beta_{1} - \beta_{2} ) q^{5} + ( -1 + \beta_{1} ) q^{7} + ( -2 + 2 \beta_{1} ) q^{11} -2 \beta_{2} q^{13} -2 q^{17} + ( -5 + \beta_{3} ) q^{19} + \beta_{1} q^{23} + ( -2 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{25} + ( -2 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{29} + 6 \beta_{1} q^{31} + ( -1 + \beta_{3} ) q^{35} + ( 2 + 4 \beta_{3} ) q^{37} + 4 \beta_{2} q^{41} + ( 2 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{43} + ( 4 \beta_{2} - 4 \beta_{3} ) q^{47} -\beta_{1} q^{49} + ( 6 + 2 \beta_{3} ) q^{53} + ( -2 + 2 \beta_{3} ) q^{55} + 2 \beta_{1} q^{59} + ( -9 + 9 \beta_{1} - \beta_{2} + \beta_{3} ) q^{61} + ( -12 + 12 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{65} + ( -8 \beta_{1} - 2 \beta_{2} ) q^{67} + ( 5 - 2 \beta_{3} ) q^{71} + ( -2 - 2 \beta_{3} ) q^{73} -2 \beta_{1} q^{77} + ( 3 - 3 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{79} + ( -2 + 2 \beta_{1} ) q^{83} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{85} + ( 12 + 2 \beta_{3} ) q^{89} + 2 \beta_{3} q^{91} + ( -11 \beta_{1} + 6 \beta_{2} ) q^{95} + ( 2 - 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - 2 q^{7} + O(q^{10}) \) \( 4 q + 2 q^{5} - 2 q^{7} - 4 q^{11} - 8 q^{17} - 20 q^{19} + 2 q^{23} - 4 q^{25} - 4 q^{29} + 12 q^{31} - 4 q^{35} + 8 q^{37} + 4 q^{43} - 2 q^{49} + 24 q^{53} - 8 q^{55} + 4 q^{59} - 18 q^{61} - 24 q^{65} - 16 q^{67} + 20 q^{71} - 8 q^{73} - 4 q^{77} + 6 q^{79} - 4 q^{83} - 4 q^{85} + 48 q^{89} - 22 q^{95} + 4 q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 2 \nu \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + 4 \nu \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{2}\)\()/3\)
\(\nu^{2}\)\(=\)\(2 \beta_{1}\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{3} + 4 \beta_{2}\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1009.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
0 0 0 −0.724745 + 1.25529i 0 −0.500000 0.866025i 0 0 0
1009.2 0 0 0 1.72474 2.98735i 0 −0.500000 0.866025i 0 0 0
2017.1 0 0 0 −0.724745 1.25529i 0 −0.500000 + 0.866025i 0 0 0
2017.2 0 0 0 1.72474 + 2.98735i 0 −0.500000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.r.e 4
3.b odd 2 1 1008.2.r.e 4
4.b odd 2 1 378.2.f.d 4
9.c even 3 1 inner 3024.2.r.e 4
9.c even 3 1 9072.2.a.bd 2
9.d odd 6 1 1008.2.r.e 4
9.d odd 6 1 9072.2.a.bk 2
12.b even 2 1 126.2.f.c 4
28.d even 2 1 2646.2.f.k 4
28.f even 6 1 2646.2.e.k 4
28.f even 6 1 2646.2.h.n 4
28.g odd 6 1 2646.2.e.l 4
28.g odd 6 1 2646.2.h.m 4
36.f odd 6 1 378.2.f.d 4
36.f odd 6 1 1134.2.a.i 2
36.h even 6 1 126.2.f.c 4
36.h even 6 1 1134.2.a.p 2
84.h odd 2 1 882.2.f.j 4
84.j odd 6 1 882.2.e.n 4
84.j odd 6 1 882.2.h.l 4
84.n even 6 1 882.2.e.m 4
84.n even 6 1 882.2.h.k 4
252.n even 6 1 2646.2.e.k 4
252.o even 6 1 882.2.e.m 4
252.r odd 6 1 882.2.h.l 4
252.s odd 6 1 882.2.f.j 4
252.s odd 6 1 7938.2.a.bn 2
252.u odd 6 1 2646.2.h.m 4
252.bb even 6 1 882.2.h.k 4
252.bi even 6 1 2646.2.f.k 4
252.bi even 6 1 7938.2.a.bm 2
252.bj even 6 1 2646.2.h.n 4
252.bl odd 6 1 2646.2.e.l 4
252.bn odd 6 1 882.2.e.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.c 4 12.b even 2 1
126.2.f.c 4 36.h even 6 1
378.2.f.d 4 4.b odd 2 1
378.2.f.d 4 36.f odd 6 1
882.2.e.m 4 84.n even 6 1
882.2.e.m 4 252.o even 6 1
882.2.e.n 4 84.j odd 6 1
882.2.e.n 4 252.bn odd 6 1
882.2.f.j 4 84.h odd 2 1
882.2.f.j 4 252.s odd 6 1
882.2.h.k 4 84.n even 6 1
882.2.h.k 4 252.bb even 6 1
882.2.h.l 4 84.j odd 6 1
882.2.h.l 4 252.r odd 6 1
1008.2.r.e 4 3.b odd 2 1
1008.2.r.e 4 9.d odd 6 1
1134.2.a.i 2 36.f odd 6 1
1134.2.a.p 2 36.h even 6 1
2646.2.e.k 4 28.f even 6 1
2646.2.e.k 4 252.n even 6 1
2646.2.e.l 4 28.g odd 6 1
2646.2.e.l 4 252.bl odd 6 1
2646.2.f.k 4 28.d even 2 1
2646.2.f.k 4 252.bi even 6 1
2646.2.h.m 4 28.g odd 6 1
2646.2.h.m 4 252.u odd 6 1
2646.2.h.n 4 28.f even 6 1
2646.2.h.n 4 252.bj even 6 1
3024.2.r.e 4 1.a even 1 1 trivial
3024.2.r.e 4 9.c even 3 1 inner
7938.2.a.bm 2 252.bi even 6 1
7938.2.a.bn 2 252.s odd 6 1
9072.2.a.bd 2 9.c even 3 1
9072.2.a.bk 2 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5}^{4} - 2 T_{5}^{3} + 9 T_{5}^{2} + 10 T_{5} + 25 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 25 + 10 T + 9 T^{2} - 2 T^{3} + T^{4} \)
$7$ \( ( 1 + T + T^{2} )^{2} \)
$11$ \( ( 4 + 2 T + T^{2} )^{2} \)
$13$ \( 576 + 24 T^{2} + T^{4} \)
$17$ \( ( 2 + T )^{4} \)
$19$ \( ( 19 + 10 T + T^{2} )^{2} \)
$23$ \( ( 1 - T + T^{2} )^{2} \)
$29$ \( 400 - 80 T + 36 T^{2} + 4 T^{3} + T^{4} \)
$31$ \( ( 36 - 6 T + T^{2} )^{2} \)
$37$ \( ( -92 - 4 T + T^{2} )^{2} \)
$41$ \( 9216 + 96 T^{2} + T^{4} \)
$43$ \( 400 + 80 T + 36 T^{2} - 4 T^{3} + T^{4} \)
$47$ \( 9216 + 96 T^{2} + T^{4} \)
$53$ \( ( 12 - 12 T + T^{2} )^{2} \)
$59$ \( ( 4 - 2 T + T^{2} )^{2} \)
$61$ \( 5625 + 1350 T + 249 T^{2} + 18 T^{3} + T^{4} \)
$67$ \( 1600 + 640 T + 216 T^{2} + 16 T^{3} + T^{4} \)
$71$ \( ( 1 - 10 T + T^{2} )^{2} \)
$73$ \( ( -20 + 4 T + T^{2} )^{2} \)
$79$ \( 225 + 90 T + 51 T^{2} - 6 T^{3} + T^{4} \)
$83$ \( ( 4 + 2 T + T^{2} )^{2} \)
$89$ \( ( 120 - 24 T + T^{2} )^{2} \)
$97$ \( 400 + 80 T + 36 T^{2} - 4 T^{3} + T^{4} \)
show more
show less