Properties

Label 3024.2.q.l.2881.9
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.9
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.l.2305.9

$q$-expansion

\(f(q)\) \(=\) \(q+(1.38590 - 2.40045i) q^{5} +(-1.74026 + 1.99286i) q^{7} +O(q^{10})\) \(q+(1.38590 - 2.40045i) q^{5} +(-1.74026 + 1.99286i) q^{7} +(1.71972 + 2.97864i) q^{11} +(-0.429164 - 0.743335i) q^{13} +(0.405132 - 0.701710i) q^{17} +(-0.750215 - 1.29941i) q^{19} +(-3.82465 + 6.62449i) q^{23} +(-1.34143 - 2.32343i) q^{25} +(-3.99696 + 6.92294i) q^{29} +7.21156 q^{31} +(2.37193 + 6.93931i) q^{35} +(0.458211 + 0.793644i) q^{37} +(-1.67577 - 2.90251i) q^{41} +(-1.20465 + 2.08652i) q^{43} -0.615039 q^{47} +(-0.942983 - 6.93619i) q^{49} +(-6.31646 + 10.9404i) q^{53} +9.53342 q^{55} +1.46938 q^{59} +11.4327 q^{61} -2.37911 q^{65} -16.2012 q^{67} +14.4177 q^{71} +(-4.16893 + 7.22079i) q^{73} +(-8.92877 - 1.75645i) q^{77} +2.75171 q^{79} +(-5.75814 + 9.97340i) q^{83} +(-1.12294 - 1.94500i) q^{85} +(5.11395 + 8.85763i) q^{89} +(2.22822 + 0.438331i) q^{91} -4.15889 q^{95} +(3.82852 - 6.63119i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - q^{5} - 5q^{7} + O(q^{10}) \) \( 22q - q^{5} - 5q^{7} + 3q^{11} + 7q^{13} + q^{17} - 13q^{19} - 22q^{25} + 7q^{29} + 12q^{31} + 2q^{35} + 6q^{37} - 4q^{41} - 2q^{43} - 34q^{47} - 25q^{49} - q^{53} - 2q^{55} + 42q^{59} - 62q^{61} - 6q^{65} - 52q^{67} - 32q^{71} + 17q^{73} + q^{77} - 32q^{79} - 36q^{83} + 28q^{85} + 2q^{89} - 15q^{91} + 48q^{95} + 19q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.38590 2.40045i 0.619793 1.07351i −0.369731 0.929139i \(-0.620550\pi\)
0.989523 0.144373i \(-0.0461167\pi\)
\(6\) 0 0
\(7\) −1.74026 + 1.99286i −0.657757 + 0.753230i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.71972 + 2.97864i 0.518515 + 0.898094i 0.999769 + 0.0215124i \(0.00684814\pi\)
−0.481254 + 0.876581i \(0.659819\pi\)
\(12\) 0 0
\(13\) −0.429164 0.743335i −0.119029 0.206164i 0.800354 0.599527i \(-0.204645\pi\)
−0.919383 + 0.393363i \(0.871311\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.405132 0.701710i 0.0982590 0.170190i −0.812705 0.582675i \(-0.802006\pi\)
0.910964 + 0.412486i \(0.135339\pi\)
\(18\) 0 0
\(19\) −0.750215 1.29941i −0.172111 0.298105i 0.767047 0.641591i \(-0.221725\pi\)
−0.939158 + 0.343486i \(0.888392\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.82465 + 6.62449i −0.797495 + 1.38130i 0.123748 + 0.992314i \(0.460508\pi\)
−0.921243 + 0.388988i \(0.872825\pi\)
\(24\) 0 0
\(25\) −1.34143 2.32343i −0.268286 0.464685i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.99696 + 6.92294i −0.742217 + 1.28556i 0.209266 + 0.977859i \(0.432893\pi\)
−0.951484 + 0.307700i \(0.900441\pi\)
\(30\) 0 0
\(31\) 7.21156 1.29524 0.647618 0.761965i \(-0.275765\pi\)
0.647618 + 0.761965i \(0.275765\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.37193 + 6.93931i 0.400929 + 1.17296i
\(36\) 0 0
\(37\) 0.458211 + 0.793644i 0.0753294 + 0.130474i 0.901229 0.433342i \(-0.142666\pi\)
−0.825900 + 0.563817i \(0.809333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.67577 2.90251i −0.261711 0.453297i 0.704986 0.709221i \(-0.250953\pi\)
−0.966697 + 0.255925i \(0.917620\pi\)
\(42\) 0 0
\(43\) −1.20465 + 2.08652i −0.183708 + 0.318191i −0.943140 0.332395i \(-0.892143\pi\)
0.759433 + 0.650586i \(0.225477\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.615039 −0.0897127 −0.0448564 0.998993i \(-0.514283\pi\)
−0.0448564 + 0.998993i \(0.514283\pi\)
\(48\) 0 0
\(49\) −0.942983 6.93619i −0.134712 0.990885i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.31646 + 10.9404i −0.867633 + 1.50278i −0.00322332 + 0.999995i \(0.501026\pi\)
−0.864409 + 0.502789i \(0.832307\pi\)
\(54\) 0 0
\(55\) 9.53342 1.28549
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.46938 0.191297 0.0956485 0.995415i \(-0.469508\pi\)
0.0956485 + 0.995415i \(0.469508\pi\)
\(60\) 0 0
\(61\) 11.4327 1.46381 0.731904 0.681408i \(-0.238632\pi\)
0.731904 + 0.681408i \(0.238632\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.37911 −0.295093
\(66\) 0 0
\(67\) −16.2012 −1.97929 −0.989647 0.143522i \(-0.954157\pi\)
−0.989647 + 0.143522i \(0.954157\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.4177 1.71106 0.855532 0.517749i \(-0.173230\pi\)
0.855532 + 0.517749i \(0.173230\pi\)
\(72\) 0 0
\(73\) −4.16893 + 7.22079i −0.487936 + 0.845130i −0.999904 0.0138749i \(-0.995583\pi\)
0.511968 + 0.859005i \(0.328917\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.92877 1.75645i −1.01753 0.200166i
\(78\) 0 0
\(79\) 2.75171 0.309592 0.154796 0.987946i \(-0.450528\pi\)
0.154796 + 0.987946i \(0.450528\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.75814 + 9.97340i −0.632038 + 1.09472i 0.355096 + 0.934830i \(0.384448\pi\)
−0.987134 + 0.159893i \(0.948885\pi\)
\(84\) 0 0
\(85\) −1.12294 1.94500i −0.121800 0.210965i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.11395 + 8.85763i 0.542078 + 0.938907i 0.998785 + 0.0492892i \(0.0156956\pi\)
−0.456707 + 0.889617i \(0.650971\pi\)
\(90\) 0 0
\(91\) 2.22822 + 0.438331i 0.233581 + 0.0459496i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.15889 −0.426693
\(96\) 0 0
\(97\) 3.82852 6.63119i 0.388727 0.673296i −0.603551 0.797324i \(-0.706248\pi\)
0.992279 + 0.124029i \(0.0395814\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.84302 3.19220i −0.183387 0.317635i 0.759645 0.650338i \(-0.225373\pi\)
−0.943032 + 0.332703i \(0.892039\pi\)
\(102\) 0 0
\(103\) −8.06026 + 13.9608i −0.794201 + 1.37560i 0.129145 + 0.991626i \(0.458777\pi\)
−0.923346 + 0.383970i \(0.874557\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.16767 + 5.48656i 0.306230 + 0.530405i 0.977534 0.210776i \(-0.0675991\pi\)
−0.671305 + 0.741182i \(0.734266\pi\)
\(108\) 0 0
\(109\) 4.89477 8.47799i 0.468834 0.812044i −0.530532 0.847665i \(-0.678008\pi\)
0.999365 + 0.0356213i \(0.0113410\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.06963 7.04881i −0.382839 0.663096i 0.608628 0.793456i \(-0.291720\pi\)
−0.991467 + 0.130360i \(0.958387\pi\)
\(114\) 0 0
\(115\) 10.6012 + 18.3617i 0.988563 + 1.71224i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.693374 + 2.02853i 0.0635615 + 0.185955i
\(120\) 0 0
\(121\) −0.414862 + 0.718563i −0.0377148 + 0.0653239i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.42264 0.574459
\(126\) 0 0
\(127\) 12.5658 1.11504 0.557518 0.830165i \(-0.311754\pi\)
0.557518 + 0.830165i \(0.311754\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.792752 + 1.37309i −0.0692631 + 0.119967i −0.898577 0.438816i \(-0.855398\pi\)
0.829314 + 0.558783i \(0.188731\pi\)
\(132\) 0 0
\(133\) 3.89511 + 0.766240i 0.337749 + 0.0664414i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.46394 + 4.26767i 0.210508 + 0.364611i 0.951874 0.306490i \(-0.0991547\pi\)
−0.741365 + 0.671102i \(0.765821\pi\)
\(138\) 0 0
\(139\) −4.12999 7.15336i −0.350301 0.606740i 0.636001 0.771688i \(-0.280588\pi\)
−0.986302 + 0.164949i \(0.947254\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.47608 2.55665i 0.123436 0.213798i
\(144\) 0 0
\(145\) 11.0788 + 19.1890i 0.920042 + 1.59356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.95698 + 12.0498i −0.569938 + 0.987161i 0.426634 + 0.904425i \(0.359699\pi\)
−0.996571 + 0.0827368i \(0.973634\pi\)
\(150\) 0 0
\(151\) 11.4964 + 19.9123i 0.935561 + 1.62044i 0.773631 + 0.633637i \(0.218439\pi\)
0.161930 + 0.986802i \(0.448228\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.99450 17.3110i 0.802777 1.39045i
\(156\) 0 0
\(157\) 18.5804 1.48288 0.741441 0.671019i \(-0.234143\pi\)
0.741441 + 0.671019i \(0.234143\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.54579 19.1503i −0.515880 1.50926i
\(162\) 0 0
\(163\) 2.45194 + 4.24688i 0.192050 + 0.332641i 0.945930 0.324372i \(-0.105153\pi\)
−0.753879 + 0.657013i \(0.771820\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.47493 9.48286i −0.423663 0.733805i 0.572632 0.819813i \(-0.305923\pi\)
−0.996295 + 0.0860073i \(0.972589\pi\)
\(168\) 0 0
\(169\) 6.13164 10.6203i 0.471664 0.816947i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.4054 1.01920 0.509598 0.860413i \(-0.329794\pi\)
0.509598 + 0.860413i \(0.329794\pi\)
\(174\) 0 0
\(175\) 6.96470 + 1.37008i 0.526482 + 0.103569i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.64888 + 11.5162i −0.496961 + 0.860761i −0.999994 0.00350600i \(-0.998884\pi\)
0.503033 + 0.864267i \(0.332217\pi\)
\(180\) 0 0
\(181\) −10.9190 −0.811601 −0.405801 0.913962i \(-0.633007\pi\)
−0.405801 + 0.913962i \(0.633007\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.54013 0.186754
\(186\) 0 0
\(187\) 2.78685 0.203795
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.6111 −1.34665 −0.673325 0.739347i \(-0.735134\pi\)
−0.673325 + 0.739347i \(0.735134\pi\)
\(192\) 0 0
\(193\) 2.92940 0.210863 0.105431 0.994427i \(-0.466378\pi\)
0.105431 + 0.994427i \(0.466378\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.5050 1.31843 0.659214 0.751956i \(-0.270889\pi\)
0.659214 + 0.751956i \(0.270889\pi\)
\(198\) 0 0
\(199\) −0.793836 + 1.37496i −0.0562736 + 0.0974687i −0.892790 0.450473i \(-0.851255\pi\)
0.836516 + 0.547942i \(0.184589\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.84070 20.0131i −0.480123 1.40465i
\(204\) 0 0
\(205\) −9.28977 −0.648826
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.58032 4.46924i 0.178484 0.309144i
\(210\) 0 0
\(211\) −12.3436 21.3798i −0.849770 1.47184i −0.881414 0.472345i \(-0.843408\pi\)
0.0316443 0.999499i \(-0.489926\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.33905 + 5.78340i 0.227721 + 0.394425i
\(216\) 0 0
\(217\) −12.5500 + 14.3716i −0.851950 + 0.975611i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.695474 −0.0467826
\(222\) 0 0
\(223\) 9.78468 16.9476i 0.655231 1.13489i −0.326605 0.945161i \(-0.605905\pi\)
0.981836 0.189732i \(-0.0607619\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.32404 7.48945i −0.286996 0.497092i 0.686095 0.727512i \(-0.259323\pi\)
−0.973091 + 0.230420i \(0.925990\pi\)
\(228\) 0 0
\(229\) −5.77136 + 9.99630i −0.381382 + 0.660574i −0.991260 0.131922i \(-0.957885\pi\)
0.609878 + 0.792496i \(0.291219\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.12745 + 14.0772i 0.532447 + 0.922225i 0.999282 + 0.0378811i \(0.0120608\pi\)
−0.466835 + 0.884344i \(0.654606\pi\)
\(234\) 0 0
\(235\) −0.852382 + 1.47637i −0.0556033 + 0.0963077i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.4336 + 21.5355i 0.804260 + 1.39302i 0.916790 + 0.399371i \(0.130771\pi\)
−0.112530 + 0.993648i \(0.535895\pi\)
\(240\) 0 0
\(241\) 9.51814 + 16.4859i 0.613117 + 1.06195i 0.990712 + 0.135979i \(0.0434180\pi\)
−0.377595 + 0.925971i \(0.623249\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.9568 7.34928i −1.14722 0.469528i
\(246\) 0 0
\(247\) −0.643931 + 1.11532i −0.0409724 + 0.0709662i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.980433 −0.0618844 −0.0309422 0.999521i \(-0.509851\pi\)
−0.0309422 + 0.999521i \(0.509851\pi\)
\(252\) 0 0
\(253\) −26.3093 −1.65405
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.18362 3.78215i 0.136211 0.235924i −0.789849 0.613302i \(-0.789841\pi\)
0.926059 + 0.377378i \(0.123174\pi\)
\(258\) 0 0
\(259\) −2.37903 0.467998i −0.147826 0.0290800i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.24212 + 10.8117i 0.384905 + 0.666676i 0.991756 0.128140i \(-0.0409007\pi\)
−0.606851 + 0.794816i \(0.707567\pi\)
\(264\) 0 0
\(265\) 17.5079 + 30.3247i 1.07550 + 1.86283i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.29270 + 14.3634i −0.505615 + 0.875750i 0.494364 + 0.869255i \(0.335401\pi\)
−0.999979 + 0.00649532i \(0.997932\pi\)
\(270\) 0 0
\(271\) −12.9814 22.4845i −0.788566 1.36584i −0.926845 0.375444i \(-0.877490\pi\)
0.138279 0.990393i \(-0.455843\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.61376 7.99127i 0.278220 0.481892i
\(276\) 0 0
\(277\) 0.980373 + 1.69806i 0.0589049 + 0.102026i 0.893974 0.448119i \(-0.147906\pi\)
−0.835069 + 0.550145i \(0.814572\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.42057 + 16.3169i −0.561984 + 0.973385i 0.435339 + 0.900267i \(0.356628\pi\)
−0.997323 + 0.0731185i \(0.976705\pi\)
\(282\) 0 0
\(283\) 23.4844 1.39600 0.698002 0.716095i \(-0.254072\pi\)
0.698002 + 0.716095i \(0.254072\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.70058 + 1.71156i 0.513579 + 0.101030i
\(288\) 0 0
\(289\) 8.17174 + 14.1539i 0.480690 + 0.832580i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.00384 + 1.73871i 0.0586452 + 0.101576i 0.893857 0.448351i \(-0.147989\pi\)
−0.835212 + 0.549928i \(0.814655\pi\)
\(294\) 0 0
\(295\) 2.03641 3.52717i 0.118564 0.205360i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.56561 0.379699
\(300\) 0 0
\(301\) −2.06173 6.03179i −0.118836 0.347666i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.8446 27.4436i 0.907257 1.57142i
\(306\) 0 0
\(307\) −32.7633 −1.86990 −0.934951 0.354777i \(-0.884557\pi\)
−0.934951 + 0.354777i \(0.884557\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.0996 −0.799514 −0.399757 0.916621i \(-0.630906\pi\)
−0.399757 + 0.916621i \(0.630906\pi\)
\(312\) 0 0
\(313\) −34.1539 −1.93049 −0.965245 0.261345i \(-0.915834\pi\)
−0.965245 + 0.261345i \(0.915834\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.58117 0.0888074 0.0444037 0.999014i \(-0.485861\pi\)
0.0444037 + 0.999014i \(0.485861\pi\)
\(318\) 0 0
\(319\) −27.4946 −1.53940
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.21575 −0.0676459
\(324\) 0 0
\(325\) −1.15139 + 1.99426i −0.0638675 + 0.110622i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.07033 1.22569i 0.0590092 0.0675743i
\(330\) 0 0
\(331\) −13.7372 −0.755067 −0.377533 0.925996i \(-0.623228\pi\)
−0.377533 + 0.925996i \(0.623228\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.4533 + 38.8902i −1.22675 + 2.12480i
\(336\) 0 0
\(337\) −8.72318 15.1090i −0.475182 0.823039i 0.524414 0.851463i \(-0.324284\pi\)
−0.999596 + 0.0284243i \(0.990951\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.4019 + 21.4807i 0.671598 + 1.16324i
\(342\) 0 0
\(343\) 15.4639 + 10.1916i 0.834972 + 0.550292i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.83104 0.205661 0.102830 0.994699i \(-0.467210\pi\)
0.102830 + 0.994699i \(0.467210\pi\)
\(348\) 0 0
\(349\) 1.69984 2.94421i 0.0909903 0.157600i −0.816938 0.576726i \(-0.804330\pi\)
0.907928 + 0.419126i \(0.137663\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.27841 + 10.8745i 0.334166 + 0.578793i 0.983324 0.181861i \(-0.0582120\pi\)
−0.649158 + 0.760653i \(0.724879\pi\)
\(354\) 0 0
\(355\) 19.9815 34.6089i 1.06051 1.83685i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.02209 10.4306i −0.317834 0.550504i 0.662202 0.749325i \(-0.269622\pi\)
−0.980036 + 0.198821i \(0.936289\pi\)
\(360\) 0 0
\(361\) 8.37435 14.5048i 0.440756 0.763411i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.5554 + 20.0146i 0.604838 + 1.04761i
\(366\) 0 0
\(367\) −1.01257 1.75382i −0.0528557 0.0915487i 0.838387 0.545075i \(-0.183499\pi\)
−0.891243 + 0.453527i \(0.850166\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.8105 31.6270i −0.561251 1.64199i
\(372\) 0 0
\(373\) −10.8130 + 18.7286i −0.559874 + 0.969731i 0.437632 + 0.899154i \(0.355817\pi\)
−0.997506 + 0.0705766i \(0.977516\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.86142 0.353381
\(378\) 0 0
\(379\) 6.76701 0.347598 0.173799 0.984781i \(-0.444396\pi\)
0.173799 + 0.984781i \(0.444396\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.82822 6.63068i 0.195613 0.338812i −0.751488 0.659747i \(-0.770664\pi\)
0.947101 + 0.320935i \(0.103997\pi\)
\(384\) 0 0
\(385\) −16.5906 + 18.9988i −0.845537 + 0.968267i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.5781 18.3218i −0.536329 0.928950i −0.999098 0.0424705i \(-0.986477\pi\)
0.462768 0.886479i \(-0.346856\pi\)
\(390\) 0 0
\(391\) 3.09898 + 5.36759i 0.156722 + 0.271451i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.81360 6.60534i 0.191883 0.332351i
\(396\) 0 0
\(397\) 4.02642 + 6.97396i 0.202080 + 0.350013i 0.949199 0.314678i \(-0.101896\pi\)
−0.747118 + 0.664691i \(0.768563\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.88886 + 6.73571i −0.194201 + 0.336365i −0.946638 0.322298i \(-0.895545\pi\)
0.752438 + 0.658664i \(0.228878\pi\)
\(402\) 0 0
\(403\) −3.09495 5.36061i −0.154170 0.267031i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.57599 + 2.72969i −0.0781188 + 0.135306i
\(408\) 0 0
\(409\) 19.5265 0.965526 0.482763 0.875751i \(-0.339633\pi\)
0.482763 + 0.875751i \(0.339633\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.55710 + 2.92827i −0.125827 + 0.144091i
\(414\) 0 0
\(415\) 15.9604 + 27.6442i 0.783466 + 1.35700i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.5259 21.6955i −0.611932 1.05990i −0.990915 0.134493i \(-0.957059\pi\)
0.378983 0.925404i \(-0.376274\pi\)
\(420\) 0 0
\(421\) 18.0746 31.3061i 0.880902 1.52577i 0.0305620 0.999533i \(-0.490270\pi\)
0.850340 0.526234i \(-0.176396\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.17383 −0.105446
\(426\) 0 0
\(427\) −19.8959 + 22.7838i −0.962829 + 1.10258i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.95636 + 3.38852i −0.0942346 + 0.163219i −0.909289 0.416165i \(-0.863374\pi\)
0.815054 + 0.579385i \(0.196707\pi\)
\(432\) 0 0
\(433\) −14.2929 −0.686872 −0.343436 0.939176i \(-0.611591\pi\)
−0.343436 + 0.939176i \(0.611591\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.4772 0.549031
\(438\) 0 0
\(439\) 4.78469 0.228361 0.114180 0.993460i \(-0.463576\pi\)
0.114180 + 0.993460i \(0.463576\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.26427 −0.392647 −0.196324 0.980539i \(-0.562900\pi\)
−0.196324 + 0.980539i \(0.562900\pi\)
\(444\) 0 0
\(445\) 28.3497 1.34390
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.6036 0.972346 0.486173 0.873863i \(-0.338392\pi\)
0.486173 + 0.873863i \(0.338392\pi\)
\(450\) 0 0
\(451\) 5.76370 9.98301i 0.271402 0.470082i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.14028 4.74124i 0.194099 0.222273i
\(456\) 0 0
\(457\) −17.9644 −0.840339 −0.420170 0.907446i \(-0.638029\pi\)
−0.420170 + 0.907446i \(0.638029\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.03501 + 6.98885i −0.187929 + 0.325503i −0.944560 0.328340i \(-0.893511\pi\)
0.756630 + 0.653843i \(0.226844\pi\)
\(462\) 0 0
\(463\) 2.50704 + 4.34232i 0.116512 + 0.201805i 0.918383 0.395692i \(-0.129495\pi\)
−0.801871 + 0.597497i \(0.796162\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.1673 22.8063i −0.609308 1.05535i −0.991355 0.131209i \(-0.958114\pi\)
0.382047 0.924143i \(-0.375219\pi\)
\(468\) 0 0
\(469\) 28.1944 32.2868i 1.30189 1.49086i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.28665 −0.381020
\(474\) 0 0
\(475\) −2.01272 + 3.48614i −0.0923500 + 0.159955i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.6222 + 21.8623i 0.576724 + 0.998916i 0.995852 + 0.0909886i \(0.0290027\pi\)
−0.419128 + 0.907927i \(0.637664\pi\)
\(480\) 0 0
\(481\) 0.393295 0.681208i 0.0179327 0.0310604i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.6119 18.3803i −0.481861 0.834608i
\(486\) 0 0
\(487\) −1.36124 + 2.35774i −0.0616837 + 0.106839i −0.895218 0.445628i \(-0.852980\pi\)
0.833534 + 0.552468i \(0.186314\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.8020 27.3698i −0.713134 1.23518i −0.963675 0.267078i \(-0.913942\pi\)
0.250541 0.968106i \(-0.419391\pi\)
\(492\) 0 0
\(493\) 3.23860 + 5.60942i 0.145859 + 0.252635i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −25.0905 + 28.7324i −1.12546 + 1.28883i
\(498\) 0 0
\(499\) 2.97445 5.15190i 0.133155 0.230631i −0.791736 0.610863i \(-0.790823\pi\)
0.924891 + 0.380232i \(0.124156\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −27.6905 −1.23466 −0.617329 0.786705i \(-0.711785\pi\)
−0.617329 + 0.786705i \(0.711785\pi\)
\(504\) 0 0
\(505\) −10.2169 −0.454647
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18.6443 32.2928i 0.826392 1.43135i −0.0744581 0.997224i \(-0.523723\pi\)
0.900850 0.434129i \(-0.142944\pi\)
\(510\) 0 0
\(511\) −7.13501 20.8741i −0.315634 0.923418i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22.3414 + 38.6964i 0.984480 + 1.70517i
\(516\) 0 0
\(517\) −1.05769 1.83198i −0.0465174 0.0805704i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.1271 + 31.3971i −0.794163 + 1.37553i 0.129207 + 0.991618i \(0.458757\pi\)
−0.923370 + 0.383912i \(0.874577\pi\)
\(522\) 0 0
\(523\) −10.2931 17.8282i −0.450086 0.779572i 0.548305 0.836278i \(-0.315273\pi\)
−0.998391 + 0.0567068i \(0.981940\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.92164 5.06043i 0.127269 0.220436i
\(528\) 0 0
\(529\) −17.7559 30.7541i −0.771996 1.33714i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.43836 + 2.49131i −0.0623023 + 0.107911i
\(534\) 0 0
\(535\) 17.5603 0.759196
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 19.0388 14.7371i 0.820057 0.634772i
\(540\) 0 0
\(541\) −0.649192 1.12443i −0.0279109 0.0483432i 0.851733 0.523977i \(-0.175552\pi\)
−0.879643 + 0.475634i \(0.842219\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.5673 23.4993i −0.581159 1.00660i
\(546\) 0 0
\(547\) 13.8412 23.9736i 0.591805 1.02504i −0.402184 0.915559i \(-0.631749\pi\)
0.993989 0.109478i \(-0.0349180\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.9943 0.510976
\(552\) 0 0
\(553\) −4.78870 + 5.48378i −0.203636 + 0.233194i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.72089 13.3730i 0.327145 0.566631i −0.654799 0.755803i \(-0.727247\pi\)
0.981944 + 0.189172i \(0.0605802\pi\)
\(558\) 0 0
\(559\) 2.06797 0.0874660
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.91343 0.0806414 0.0403207 0.999187i \(-0.487162\pi\)
0.0403207 + 0.999187i \(0.487162\pi\)
\(564\) 0 0
\(565\) −22.5604 −0.949122
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.7628 0.618887 0.309444 0.950918i \(-0.399857\pi\)
0.309444 + 0.950918i \(0.399857\pi\)
\(570\) 0 0
\(571\) −2.56417 −0.107307 −0.0536535 0.998560i \(-0.517087\pi\)
−0.0536535 + 0.998560i \(0.517087\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 20.5220 0.855827
\(576\) 0 0
\(577\) 7.01283 12.1466i 0.291948 0.505669i −0.682322 0.731052i \(-0.739030\pi\)
0.974270 + 0.225383i \(0.0723632\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.85491 28.8315i −0.408851 1.19613i
\(582\) 0 0
\(583\) −43.4501 −1.79952
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.7666 27.3085i 0.650756 1.12714i −0.332183 0.943215i \(-0.607785\pi\)
0.982940 0.183928i \(-0.0588813\pi\)
\(588\) 0 0
\(589\) −5.41022 9.37078i −0.222924 0.386116i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.72311 + 9.91272i 0.235020 + 0.407067i 0.959279 0.282462i \(-0.0911511\pi\)
−0.724258 + 0.689529i \(0.757818\pi\)
\(594\) 0 0
\(595\) 5.83033 + 1.14693i 0.239020 + 0.0470196i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.61368 0.229369 0.114684 0.993402i \(-0.463414\pi\)
0.114684 + 0.993402i \(0.463414\pi\)
\(600\) 0 0
\(601\) 19.2223 33.2940i 0.784094 1.35809i −0.145444 0.989366i \(-0.546461\pi\)
0.929539 0.368725i \(-0.120205\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.14991 + 1.99171i 0.0467507 + 0.0809745i
\(606\) 0 0
\(607\) −8.17187 + 14.1541i −0.331686 + 0.574497i −0.982843 0.184446i \(-0.940951\pi\)
0.651157 + 0.758943i \(0.274284\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.263953 + 0.457180i 0.0106784 + 0.0184955i
\(612\) 0 0
\(613\) −6.19332 + 10.7272i −0.250146 + 0.433266i −0.963566 0.267471i \(-0.913812\pi\)
0.713420 + 0.700737i \(0.247145\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.9853 36.3476i −0.844836 1.46330i −0.885764 0.464136i \(-0.846365\pi\)
0.0409280 0.999162i \(-0.486969\pi\)
\(618\) 0 0
\(619\) −17.9473 31.0856i −0.721361 1.24943i −0.960454 0.278438i \(-0.910183\pi\)
0.239093 0.970997i \(-0.423150\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −26.5516 5.22319i −1.06377 0.209263i
\(624\) 0 0
\(625\) 15.6083 27.0343i 0.624331 1.08137i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.742544 0.0296072
\(630\) 0 0
\(631\) 19.5519 0.778349 0.389175 0.921164i \(-0.372760\pi\)
0.389175 + 0.921164i \(0.372760\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.4149 30.1636i 0.691091 1.19700i
\(636\) 0 0
\(637\) −4.75122 + 3.67772i −0.188250 + 0.145717i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.30132 12.6463i −0.288385 0.499497i 0.685040 0.728506i \(-0.259785\pi\)
−0.973424 + 0.229009i \(0.926452\pi\)
\(642\) 0 0
\(643\) 5.96942 + 10.3393i 0.235411 + 0.407744i 0.959392 0.282076i \(-0.0910231\pi\)
−0.723981 + 0.689820i \(0.757690\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.92060 + 3.32658i −0.0755067 + 0.130781i −0.901306 0.433182i \(-0.857391\pi\)
0.825800 + 0.563963i \(0.190724\pi\)
\(648\) 0 0
\(649\) 2.52692 + 4.37675i 0.0991903 + 0.171803i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.9959 34.6339i 0.782501 1.35533i −0.147980 0.988990i \(-0.547277\pi\)
0.930481 0.366340i \(-0.119389\pi\)
\(654\) 0 0
\(655\) 2.19735 + 3.80592i 0.0858575 + 0.148710i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.60101 2.77303i 0.0623665 0.108022i −0.833156 0.553038i \(-0.813469\pi\)
0.895523 + 0.445016i \(0.146802\pi\)
\(660\) 0 0
\(661\) −43.3030 −1.68429 −0.842146 0.539250i \(-0.818708\pi\)
−0.842146 + 0.539250i \(0.818708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.23755 8.28808i 0.280660 0.321398i
\(666\) 0 0
\(667\) −30.5740 52.9557i −1.18383 2.05045i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 19.6610 + 34.0539i 0.759006 + 1.31464i
\(672\) 0 0
\(673\) 12.2936 21.2931i 0.473883 0.820790i −0.525670 0.850689i \(-0.676185\pi\)
0.999553 + 0.0298991i \(0.00951859\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.4188 1.47655 0.738276 0.674498i \(-0.235640\pi\)
0.738276 + 0.674498i \(0.235640\pi\)
\(678\) 0 0
\(679\) 6.55242 + 19.1697i 0.251459 + 0.735666i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.122464 + 0.212113i −0.00468594 + 0.00811629i −0.868359 0.495936i \(-0.834825\pi\)
0.863673 + 0.504053i \(0.168158\pi\)
\(684\) 0 0
\(685\) 13.6591 0.521886
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.8432 0.413093
\(690\) 0 0
\(691\) 7.30292 0.277816 0.138908 0.990305i \(-0.455641\pi\)
0.138908 + 0.990305i \(0.455641\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.8950 −0.868457
\(696\) 0 0
\(697\) −2.71563 −0.102862
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32.3889 −1.22331 −0.611656 0.791124i \(-0.709496\pi\)
−0.611656 + 0.791124i \(0.709496\pi\)
\(702\) 0 0
\(703\) 0.687513 1.19081i 0.0259301 0.0449122i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.56893 + 1.88238i 0.359877 + 0.0707943i
\(708\) 0 0
\(709\) 2.92274 0.109766 0.0548828 0.998493i \(-0.482521\pi\)
0.0548828 + 0.998493i \(0.482521\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −27.5817 + 47.7729i −1.03294 + 1.78911i
\(714\) 0 0
\(715\) −4.09141 7.08652i −0.153010 0.265021i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.78527 + 15.2165i 0.327635 + 0.567481i 0.982042 0.188662i \(-0.0604150\pi\)
−0.654407 + 0.756143i \(0.727082\pi\)
\(720\) 0 0
\(721\) −13.7949 40.3584i −0.513750 1.50302i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 21.4466 0.796506
\(726\) 0 0
\(727\) −20.0486 + 34.7252i −0.743561 + 1.28789i 0.207303 + 0.978277i \(0.433531\pi\)
−0.950864 + 0.309609i \(0.899802\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.976087 + 1.69063i 0.0361019 + 0.0625303i
\(732\) 0 0
\(733\) 3.56234 6.17016i 0.131578 0.227900i −0.792707 0.609603i \(-0.791329\pi\)
0.924285 + 0.381703i \(0.124662\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27.8615 48.2576i −1.02629 1.77759i
\(738\) 0 0
\(739\) 2.13570 3.69914i 0.0785631 0.136075i −0.824067 0.566492i \(-0.808300\pi\)
0.902630 + 0.430417i \(0.141633\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.108257 + 0.187507i 0.00397157 + 0.00687896i 0.868004 0.496557i \(-0.165402\pi\)
−0.864033 + 0.503436i \(0.832069\pi\)
\(744\) 0 0
\(745\) 19.2833 + 33.3997i 0.706487 + 1.22367i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.4465 3.23533i −0.600942 0.118216i
\(750\) 0 0
\(751\) 11.7920 20.4244i 0.430297 0.745296i −0.566602 0.823992i \(-0.691742\pi\)
0.996899 + 0.0786955i \(0.0250755\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 63.7312 2.31942
\(756\) 0 0
\(757\) −22.0176 −0.800242 −0.400121 0.916462i \(-0.631032\pi\)
−0.400121 + 0.916462i \(0.631032\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.05699 + 15.6872i −0.328316 + 0.568659i −0.982178 0.187954i \(-0.939814\pi\)
0.653862 + 0.756614i \(0.273148\pi\)
\(762\) 0 0
\(763\) 8.37727 + 24.5085i 0.303277 + 0.887267i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.630606 1.09224i −0.0227699 0.0394385i
\(768\) 0 0
\(769\) 3.16710 + 5.48558i 0.114209 + 0.197815i 0.917463 0.397821i \(-0.130233\pi\)
−0.803255 + 0.595636i \(0.796900\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.10740 + 5.38218i −0.111765 + 0.193584i −0.916482 0.400076i \(-0.868984\pi\)
0.804717 + 0.593659i \(0.202317\pi\)
\(774\) 0 0
\(775\) −9.67381 16.7555i −0.347494 0.601876i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.51437 + 4.35502i −0.0900867 + 0.156035i
\(780\) 0 0
\(781\) 24.7944 + 42.9451i 0.887212 + 1.53670i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25.7506 44.6014i 0.919079 1.59189i
\(786\) 0 0
\(787\) 19.3183 0.688624 0.344312 0.938855i \(-0.388112\pi\)
0.344312 + 0.938855i \(0.388112\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.1295 + 4.15656i 0.751279 + 0.147790i
\(792\) 0 0
\(793\) −4.90651 8.49832i −0.174235 0.301784i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.09519 + 8.82513i 0.180481 + 0.312602i 0.942044 0.335488i \(-0.108901\pi\)
−0.761563 + 0.648090i \(0.775568\pi\)
\(798\)