Properties

Label 3024.2.q.l.2881.7
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.7
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.l.2305.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.263002 - 0.455533i) q^{5} +(0.333150 + 2.62469i) q^{7} +O(q^{10})\) \(q+(0.263002 - 0.455533i) q^{5} +(0.333150 + 2.62469i) q^{7} +(-2.30526 - 3.99283i) q^{11} +(0.244554 + 0.423580i) q^{13} +(-2.75579 + 4.77318i) q^{17} +(-1.83782 - 3.18319i) q^{19} +(0.0269769 - 0.0467253i) q^{23} +(2.36166 + 4.09051i) q^{25} +(3.28471 - 5.68929i) q^{29} -6.07640 q^{31} +(1.28325 + 0.538539i) q^{35} +(0.223731 + 0.387513i) q^{37} +(-2.52284 - 4.36968i) q^{41} +(-2.84893 + 4.93449i) q^{43} -9.19621 q^{47} +(-6.77802 + 1.74883i) q^{49} +(4.37138 - 7.57145i) q^{53} -2.42515 q^{55} -6.63076 q^{59} -0.465625 q^{61} +0.257273 q^{65} -5.19358 q^{67} +1.76328 q^{71} +(-5.23776 + 9.07207i) q^{73} +(9.71195 - 7.38081i) q^{77} -16.3702 q^{79} +(4.49251 - 7.78126i) q^{83} +(1.44956 + 2.51071i) q^{85} +(7.05145 + 12.2135i) q^{89} +(-1.03029 + 0.782994i) q^{91} -1.93340 q^{95} +(5.22413 - 9.04847i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - q^{5} - 5q^{7} + O(q^{10}) \) \( 22q - q^{5} - 5q^{7} + 3q^{11} + 7q^{13} + q^{17} - 13q^{19} - 22q^{25} + 7q^{29} + 12q^{31} + 2q^{35} + 6q^{37} - 4q^{41} - 2q^{43} - 34q^{47} - 25q^{49} - q^{53} - 2q^{55} + 42q^{59} - 62q^{61} - 6q^{65} - 52q^{67} - 32q^{71} + 17q^{73} + q^{77} - 32q^{79} - 36q^{83} + 28q^{85} + 2q^{89} - 15q^{91} + 48q^{95} + 19q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.263002 0.455533i 0.117618 0.203721i −0.801205 0.598390i \(-0.795807\pi\)
0.918823 + 0.394669i \(0.129141\pi\)
\(6\) 0 0
\(7\) 0.333150 + 2.62469i 0.125919 + 0.992041i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.30526 3.99283i −0.695062 1.20388i −0.970160 0.242466i \(-0.922044\pi\)
0.275098 0.961416i \(-0.411290\pi\)
\(12\) 0 0
\(13\) 0.244554 + 0.423580i 0.0678270 + 0.117480i 0.897945 0.440109i \(-0.145060\pi\)
−0.830118 + 0.557588i \(0.811727\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.75579 + 4.77318i −0.668378 + 1.15767i 0.309979 + 0.950743i \(0.399678\pi\)
−0.978357 + 0.206922i \(0.933655\pi\)
\(18\) 0 0
\(19\) −1.83782 3.18319i −0.421624 0.730274i 0.574475 0.818522i \(-0.305206\pi\)
−0.996099 + 0.0882484i \(0.971873\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0269769 0.0467253i 0.00562506 0.00974289i −0.863199 0.504864i \(-0.831543\pi\)
0.868824 + 0.495121i \(0.164876\pi\)
\(24\) 0 0
\(25\) 2.36166 + 4.09051i 0.472332 + 0.818103i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.28471 5.68929i 0.609956 1.05647i −0.381292 0.924455i \(-0.624521\pi\)
0.991247 0.132019i \(-0.0421461\pi\)
\(30\) 0 0
\(31\) −6.07640 −1.09135 −0.545676 0.837996i \(-0.683727\pi\)
−0.545676 + 0.837996i \(0.683727\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.28325 + 0.538539i 0.216909 + 0.0910297i
\(36\) 0 0
\(37\) 0.223731 + 0.387513i 0.0367811 + 0.0637068i 0.883830 0.467808i \(-0.154956\pi\)
−0.847049 + 0.531515i \(0.821623\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.52284 4.36968i −0.394001 0.682430i 0.598972 0.800770i \(-0.295576\pi\)
−0.992973 + 0.118340i \(0.962243\pi\)
\(42\) 0 0
\(43\) −2.84893 + 4.93449i −0.434458 + 0.752503i −0.997251 0.0740947i \(-0.976393\pi\)
0.562794 + 0.826598i \(0.309727\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.19621 −1.34140 −0.670702 0.741726i \(-0.734007\pi\)
−0.670702 + 0.741726i \(0.734007\pi\)
\(48\) 0 0
\(49\) −6.77802 + 1.74883i −0.968289 + 0.249833i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.37138 7.57145i 0.600455 1.04002i −0.392297 0.919839i \(-0.628320\pi\)
0.992752 0.120180i \(-0.0383471\pi\)
\(54\) 0 0
\(55\) −2.42515 −0.327008
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.63076 −0.863252 −0.431626 0.902053i \(-0.642060\pi\)
−0.431626 + 0.902053i \(0.642060\pi\)
\(60\) 0 0
\(61\) −0.465625 −0.0596171 −0.0298086 0.999556i \(-0.509490\pi\)
−0.0298086 + 0.999556i \(0.509490\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.257273 0.0319108
\(66\) 0 0
\(67\) −5.19358 −0.634496 −0.317248 0.948343i \(-0.602759\pi\)
−0.317248 + 0.948343i \(0.602759\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.76328 0.209263 0.104632 0.994511i \(-0.466634\pi\)
0.104632 + 0.994511i \(0.466634\pi\)
\(72\) 0 0
\(73\) −5.23776 + 9.07207i −0.613034 + 1.06181i 0.377692 + 0.925931i \(0.376718\pi\)
−0.990726 + 0.135875i \(0.956616\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.71195 7.38081i 1.10678 0.841121i
\(78\) 0 0
\(79\) −16.3702 −1.84179 −0.920895 0.389812i \(-0.872540\pi\)
−0.920895 + 0.389812i \(0.872540\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.49251 7.78126i 0.493117 0.854104i −0.506851 0.862034i \(-0.669191\pi\)
0.999969 + 0.00792925i \(0.00252399\pi\)
\(84\) 0 0
\(85\) 1.44956 + 2.51071i 0.157227 + 0.272325i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.05145 + 12.2135i 0.747452 + 1.29463i 0.949040 + 0.315155i \(0.102056\pi\)
−0.201588 + 0.979470i \(0.564610\pi\)
\(90\) 0 0
\(91\) −1.03029 + 0.782994i −0.108004 + 0.0820801i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.93340 −0.198363
\(96\) 0 0
\(97\) 5.22413 9.04847i 0.530430 0.918732i −0.468939 0.883230i \(-0.655364\pi\)
0.999370 0.0355020i \(-0.0113030\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.98254 8.63001i −0.495781 0.858718i 0.504207 0.863583i \(-0.331785\pi\)
−0.999988 + 0.00486475i \(0.998451\pi\)
\(102\) 0 0
\(103\) 5.82553 10.0901i 0.574006 0.994208i −0.422143 0.906529i \(-0.638722\pi\)
0.996149 0.0876783i \(-0.0279448\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.45556 + 4.25316i 0.237388 + 0.411168i 0.959964 0.280123i \(-0.0903754\pi\)
−0.722576 + 0.691292i \(0.757042\pi\)
\(108\) 0 0
\(109\) −9.76353 + 16.9109i −0.935177 + 1.61977i −0.160858 + 0.986978i \(0.551426\pi\)
−0.774319 + 0.632796i \(0.781907\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.48658 9.50304i −0.516134 0.893971i −0.999825 0.0187317i \(-0.994037\pi\)
0.483690 0.875239i \(-0.339296\pi\)
\(114\) 0 0
\(115\) −0.0141899 0.0245777i −0.00132322 0.00229188i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.4462 5.64293i −1.23261 0.517287i
\(120\) 0 0
\(121\) −5.12844 + 8.88272i −0.466222 + 0.807520i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.11451 0.457456
\(126\) 0 0
\(127\) 16.6107 1.47396 0.736979 0.675915i \(-0.236252\pi\)
0.736979 + 0.675915i \(0.236252\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.90848 + 5.03763i −0.254115 + 0.440140i −0.964655 0.263517i \(-0.915117\pi\)
0.710540 + 0.703657i \(0.248451\pi\)
\(132\) 0 0
\(133\) 7.74263 5.88418i 0.671371 0.510223i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.61313 7.99017i −0.394126 0.682647i 0.598863 0.800852i \(-0.295619\pi\)
−0.992989 + 0.118205i \(0.962286\pi\)
\(138\) 0 0
\(139\) −6.88477 11.9248i −0.583959 1.01145i −0.995004 0.0998314i \(-0.968170\pi\)
0.411046 0.911615i \(-0.365164\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.12752 1.95292i 0.0942880 0.163312i
\(144\) 0 0
\(145\) −1.72777 2.99259i −0.143484 0.248521i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.15043 + 7.18875i −0.340016 + 0.588926i −0.984435 0.175747i \(-0.943766\pi\)
0.644419 + 0.764673i \(0.277099\pi\)
\(150\) 0 0
\(151\) −7.24894 12.5555i −0.589911 1.02176i −0.994244 0.107143i \(-0.965830\pi\)
0.404333 0.914612i \(-0.367504\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.59811 + 2.76800i −0.128363 + 0.222331i
\(156\) 0 0
\(157\) −12.4887 −0.996705 −0.498352 0.866975i \(-0.666061\pi\)
−0.498352 + 0.866975i \(0.666061\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.131627 + 0.0552394i 0.0103736 + 0.00435348i
\(162\) 0 0
\(163\) 2.48448 + 4.30325i 0.194600 + 0.337057i 0.946769 0.321913i \(-0.104326\pi\)
−0.752169 + 0.658970i \(0.770993\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.0088 17.3357i −0.774504 1.34148i −0.935073 0.354456i \(-0.884666\pi\)
0.160569 0.987025i \(-0.448667\pi\)
\(168\) 0 0
\(169\) 6.38039 11.0512i 0.490799 0.850089i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.05485 −0.688427 −0.344214 0.938891i \(-0.611854\pi\)
−0.344214 + 0.938891i \(0.611854\pi\)
\(174\) 0 0
\(175\) −9.94956 + 7.56138i −0.752116 + 0.571587i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −7.69175 + 13.3225i −0.574908 + 0.995770i 0.421143 + 0.906994i \(0.361629\pi\)
−0.996052 + 0.0887763i \(0.971704\pi\)
\(180\) 0 0
\(181\) −9.54973 −0.709826 −0.354913 0.934899i \(-0.615489\pi\)
−0.354913 + 0.934899i \(0.615489\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.235367 0.0173045
\(186\) 0 0
\(187\) 25.4113 1.85826
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0433 −0.799063 −0.399531 0.916720i \(-0.630827\pi\)
−0.399531 + 0.916720i \(0.630827\pi\)
\(192\) 0 0
\(193\) 26.6991 1.92185 0.960923 0.276817i \(-0.0892796\pi\)
0.960923 + 0.276817i \(0.0892796\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.8386 −0.914715 −0.457357 0.889283i \(-0.651204\pi\)
−0.457357 + 0.889283i \(0.651204\pi\)
\(198\) 0 0
\(199\) −10.1408 + 17.5644i −0.718864 + 1.24511i 0.242586 + 0.970130i \(0.422004\pi\)
−0.961450 + 0.274979i \(0.911329\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.0269 + 6.72597i 1.12487 + 0.472071i
\(204\) 0 0
\(205\) −2.65405 −0.185367
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.47329 + 14.6762i −0.586109 + 1.01517i
\(210\) 0 0
\(211\) −4.77903 8.27752i −0.329002 0.569848i 0.653312 0.757088i \(-0.273379\pi\)
−0.982314 + 0.187241i \(0.940046\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.49855 + 2.59556i 0.102200 + 0.177016i
\(216\) 0 0
\(217\) −2.02435 15.9487i −0.137422 1.08267i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.69576 −0.181337
\(222\) 0 0
\(223\) −11.9155 + 20.6383i −0.797921 + 1.38204i 0.123046 + 0.992401i \(0.460734\pi\)
−0.920968 + 0.389639i \(0.872600\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.33567 + 2.31345i 0.0886514 + 0.153549i 0.906941 0.421257i \(-0.138411\pi\)
−0.818290 + 0.574806i \(0.805078\pi\)
\(228\) 0 0
\(229\) −3.16258 + 5.47775i −0.208989 + 0.361980i −0.951396 0.307969i \(-0.900351\pi\)
0.742407 + 0.669949i \(0.233684\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.63381 8.02600i −0.303571 0.525801i 0.673371 0.739305i \(-0.264846\pi\)
−0.976942 + 0.213504i \(0.931512\pi\)
\(234\) 0 0
\(235\) −2.41862 + 4.18918i −0.157774 + 0.273272i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.69219 + 2.93096i 0.109459 + 0.189588i 0.915551 0.402202i \(-0.131755\pi\)
−0.806092 + 0.591790i \(0.798422\pi\)
\(240\) 0 0
\(241\) −6.57982 11.3966i −0.423844 0.734119i 0.572468 0.819927i \(-0.305986\pi\)
−0.996312 + 0.0858082i \(0.972653\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.985984 + 3.54756i −0.0629922 + 0.226645i
\(246\) 0 0
\(247\) 0.898890 1.55692i 0.0571950 0.0990647i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.30235 −0.145323 −0.0726614 0.997357i \(-0.523149\pi\)
−0.0726614 + 0.997357i \(0.523149\pi\)
\(252\) 0 0
\(253\) −0.248755 −0.0156391
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.5661 + 25.2293i −0.908610 + 1.57376i −0.0926132 + 0.995702i \(0.529522\pi\)
−0.815997 + 0.578056i \(0.803811\pi\)
\(258\) 0 0
\(259\) −0.942567 + 0.716324i −0.0585683 + 0.0445102i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.35919 + 2.35418i 0.0838110 + 0.145165i 0.904884 0.425658i \(-0.139957\pi\)
−0.821073 + 0.570823i \(0.806624\pi\)
\(264\) 0 0
\(265\) −2.29936 3.98261i −0.141249 0.244650i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.80840 + 4.86428i −0.171231 + 0.296581i −0.938850 0.344325i \(-0.888108\pi\)
0.767620 + 0.640906i \(0.221441\pi\)
\(270\) 0 0
\(271\) 7.25164 + 12.5602i 0.440506 + 0.762978i 0.997727 0.0673860i \(-0.0214659\pi\)
−0.557221 + 0.830364i \(0.688133\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.8885 18.8594i 0.656600 1.13726i
\(276\) 0 0
\(277\) 0.873953 + 1.51373i 0.0525108 + 0.0909513i 0.891086 0.453835i \(-0.149944\pi\)
−0.838575 + 0.544786i \(0.816611\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.35657 + 9.27786i −0.319546 + 0.553471i −0.980393 0.197050i \(-0.936864\pi\)
0.660847 + 0.750521i \(0.270197\pi\)
\(282\) 0 0
\(283\) 12.5967 0.748793 0.374397 0.927269i \(-0.377850\pi\)
0.374397 + 0.927269i \(0.377850\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.6286 8.07743i 0.627386 0.476796i
\(288\) 0 0
\(289\) −6.68881 11.5854i −0.393459 0.681491i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.57575 + 2.72928i 0.0920562 + 0.159446i 0.908376 0.418154i \(-0.137323\pi\)
−0.816320 + 0.577600i \(0.803989\pi\)
\(294\) 0 0
\(295\) −1.74391 + 3.02053i −0.101534 + 0.175862i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.0263892 0.00152613
\(300\) 0 0
\(301\) −13.9006 5.83364i −0.801220 0.336245i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.122460 + 0.212107i −0.00701206 + 0.0121452i
\(306\) 0 0
\(307\) 20.3884 1.16363 0.581813 0.813322i \(-0.302343\pi\)
0.581813 + 0.813322i \(0.302343\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.7014 1.28728 0.643640 0.765328i \(-0.277423\pi\)
0.643640 + 0.765328i \(0.277423\pi\)
\(312\) 0 0
\(313\) −16.7078 −0.944380 −0.472190 0.881497i \(-0.656536\pi\)
−0.472190 + 0.881497i \(0.656536\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.3280 −0.580080 −0.290040 0.957015i \(-0.593669\pi\)
−0.290040 + 0.957015i \(0.593669\pi\)
\(318\) 0 0
\(319\) −30.2884 −1.69583
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.2586 1.12722
\(324\) 0 0
\(325\) −1.15511 + 2.00070i −0.0640738 + 0.110979i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.06371 24.1372i −0.168908 1.33073i
\(330\) 0 0
\(331\) 22.6315 1.24394 0.621970 0.783041i \(-0.286332\pi\)
0.621970 + 0.783041i \(0.286332\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.36592 + 2.36585i −0.0746283 + 0.129260i
\(336\) 0 0
\(337\) 6.78253 + 11.7477i 0.369468 + 0.639938i 0.989482 0.144653i \(-0.0462066\pi\)
−0.620014 + 0.784590i \(0.712873\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.0077 + 24.2620i 0.758558 + 1.31386i
\(342\) 0 0
\(343\) −6.84824 17.2076i −0.369770 0.929123i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −33.0262 −1.77294 −0.886470 0.462786i \(-0.846850\pi\)
−0.886470 + 0.462786i \(0.846850\pi\)
\(348\) 0 0
\(349\) −10.1773 + 17.6276i −0.544778 + 0.943584i 0.453842 + 0.891082i \(0.350053\pi\)
−0.998621 + 0.0525019i \(0.983280\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.75381 4.76975i −0.146571 0.253868i 0.783387 0.621534i \(-0.213490\pi\)
−0.929958 + 0.367666i \(0.880157\pi\)
\(354\) 0 0
\(355\) 0.463748 0.803234i 0.0246132 0.0426312i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.4656 18.1270i −0.552354 0.956704i −0.998104 0.0615472i \(-0.980397\pi\)
0.445751 0.895157i \(-0.352937\pi\)
\(360\) 0 0
\(361\) 2.74486 4.75424i 0.144467 0.250223i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.75509 + 4.77195i 0.144208 + 0.249775i
\(366\) 0 0
\(367\) 2.14319 + 3.71211i 0.111873 + 0.193770i 0.916526 0.399976i \(-0.130982\pi\)
−0.804652 + 0.593746i \(0.797648\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.3290 + 8.95110i 1.10735 + 0.464718i
\(372\) 0 0
\(373\) 5.64461 9.77675i 0.292267 0.506221i −0.682079 0.731279i \(-0.738924\pi\)
0.974345 + 0.225058i \(0.0722571\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.21316 0.165486
\(378\) 0 0
\(379\) 20.5828 1.05727 0.528634 0.848850i \(-0.322705\pi\)
0.528634 + 0.848850i \(0.322705\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.8108 18.7248i 0.552405 0.956793i −0.445696 0.895184i \(-0.647044\pi\)
0.998100 0.0616083i \(-0.0196230\pi\)
\(384\) 0 0
\(385\) −0.807939 6.36528i −0.0411764 0.324405i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.34241 12.7174i −0.372275 0.644799i 0.617640 0.786461i \(-0.288089\pi\)
−0.989915 + 0.141662i \(0.954755\pi\)
\(390\) 0 0
\(391\) 0.148685 + 0.257531i 0.00751934 + 0.0130239i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.30539 + 7.45716i −0.216628 + 0.375210i
\(396\) 0 0
\(397\) −3.13424 5.42866i −0.157303 0.272457i 0.776592 0.630003i \(-0.216947\pi\)
−0.933895 + 0.357547i \(0.883613\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.6951 25.4526i 0.733836 1.27104i −0.221396 0.975184i \(-0.571061\pi\)
0.955232 0.295857i \(-0.0956052\pi\)
\(402\) 0 0
\(403\) −1.48601 2.57384i −0.0740232 0.128212i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.03152 1.78664i 0.0511303 0.0885603i
\(408\) 0 0
\(409\) −1.63285 −0.0807392 −0.0403696 0.999185i \(-0.512854\pi\)
−0.0403696 + 0.999185i \(0.512854\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.20904 17.4037i −0.108700 0.856381i
\(414\) 0 0
\(415\) −2.36308 4.09298i −0.115999 0.200916i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.01823 15.6200i −0.440569 0.763088i 0.557162 0.830404i \(-0.311890\pi\)
−0.997732 + 0.0673151i \(0.978557\pi\)
\(420\) 0 0
\(421\) 16.8278 29.1465i 0.820135 1.42052i −0.0854466 0.996343i \(-0.527232\pi\)
0.905581 0.424172i \(-0.139435\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −26.0330 −1.26279
\(426\) 0 0
\(427\) −0.155123 1.22212i −0.00750691 0.0591426i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.1545 + 19.3202i −0.537295 + 0.930622i 0.461754 + 0.887008i \(0.347220\pi\)
−0.999048 + 0.0436135i \(0.986113\pi\)
\(432\) 0 0
\(433\) 7.32414 0.351976 0.175988 0.984392i \(-0.443688\pi\)
0.175988 + 0.984392i \(0.443688\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.198314 −0.00948664
\(438\) 0 0
\(439\) 24.6728 1.17757 0.588785 0.808289i \(-0.299606\pi\)
0.588785 + 0.808289i \(0.299606\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.5363 1.45082 0.725412 0.688315i \(-0.241649\pi\)
0.725412 + 0.688315i \(0.241649\pi\)
\(444\) 0 0
\(445\) 7.41819 0.351656
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 41.4782 1.95748 0.978738 0.205116i \(-0.0657572\pi\)
0.978738 + 0.205116i \(0.0657572\pi\)
\(450\) 0 0
\(451\) −11.6316 + 20.1465i −0.547710 + 0.948662i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.0857103 + 0.675262i 0.00401816 + 0.0316568i
\(456\) 0 0
\(457\) −11.6289 −0.543978 −0.271989 0.962300i \(-0.587681\pi\)
−0.271989 + 0.962300i \(0.587681\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.60886 9.71483i 0.261231 0.452465i −0.705339 0.708871i \(-0.749205\pi\)
0.966569 + 0.256406i \(0.0825383\pi\)
\(462\) 0 0
\(463\) 19.9362 + 34.5305i 0.926514 + 1.60477i 0.789108 + 0.614254i \(0.210543\pi\)
0.137405 + 0.990515i \(0.456124\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.7818 + 20.4067i 0.545198 + 0.944311i 0.998594 + 0.0530016i \(0.0168788\pi\)
−0.453397 + 0.891309i \(0.649788\pi\)
\(468\) 0 0
\(469\) −1.73024 13.6315i −0.0798950 0.629446i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 26.2701 1.20790
\(474\) 0 0
\(475\) 8.68059 15.0352i 0.398293 0.689864i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.11485 12.3233i −0.325086 0.563065i 0.656444 0.754375i \(-0.272060\pi\)
−0.981530 + 0.191310i \(0.938727\pi\)
\(480\) 0 0
\(481\) −0.109428 + 0.189536i −0.00498951 + 0.00864208i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.74792 4.75953i −0.124776 0.216119i
\(486\) 0 0
\(487\) 13.9818 24.2171i 0.633574 1.09738i −0.353242 0.935532i \(-0.614921\pi\)
0.986815 0.161850i \(-0.0517460\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.2543 + 29.8853i 0.778676 + 1.34871i 0.932705 + 0.360639i \(0.117442\pi\)
−0.154030 + 0.988066i \(0.549225\pi\)
\(492\) 0 0
\(493\) 18.1040 + 31.3570i 0.815362 + 1.41225i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.587437 + 4.62808i 0.0263502 + 0.207598i
\(498\) 0 0
\(499\) 13.1436 22.7654i 0.588390 1.01912i −0.406054 0.913849i \(-0.633095\pi\)
0.994443 0.105272i \(-0.0335712\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.09068 0.271570 0.135785 0.990738i \(-0.456644\pi\)
0.135785 + 0.990738i \(0.456644\pi\)
\(504\) 0 0
\(505\) −5.24167 −0.233251
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.08615 + 7.07742i −0.181116 + 0.313701i −0.942261 0.334880i \(-0.891304\pi\)
0.761145 + 0.648582i \(0.224637\pi\)
\(510\) 0 0
\(511\) −25.5564 10.7252i −1.13055 0.474453i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.06425 5.30744i −0.135027 0.233874i
\(516\) 0 0
\(517\) 21.1996 + 36.7189i 0.932360 + 1.61489i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.0485 + 22.6007i −0.571666 + 0.990155i 0.424729 + 0.905321i \(0.360370\pi\)
−0.996395 + 0.0848346i \(0.972964\pi\)
\(522\) 0 0
\(523\) −13.6655 23.6694i −0.597553 1.03499i −0.993181 0.116581i \(-0.962807\pi\)
0.395628 0.918411i \(-0.370527\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.7453 29.0037i 0.729437 1.26342i
\(528\) 0 0
\(529\) 11.4985 + 19.9161i 0.499937 + 0.865916i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.23394 2.13725i 0.0534478 0.0925744i
\(534\) 0 0
\(535\) 2.58327 0.111685
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22.6079 + 23.0320i 0.973790 + 0.992057i
\(540\) 0 0
\(541\) −5.79086 10.0301i −0.248969 0.431226i 0.714271 0.699869i \(-0.246758\pi\)
−0.963240 + 0.268643i \(0.913425\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.13566 + 8.89522i 0.219987 + 0.381029i
\(546\) 0 0
\(547\) −20.3651 + 35.2734i −0.870750 + 1.50818i −0.00952755 + 0.999955i \(0.503033\pi\)
−0.861222 + 0.508228i \(0.830301\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24.1468 −1.02869
\(552\) 0 0
\(553\) −5.45372 42.9667i −0.231916 1.82713i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.0085 + 17.3353i −0.424075 + 0.734520i −0.996334 0.0855533i \(-0.972734\pi\)
0.572258 + 0.820074i \(0.306068\pi\)
\(558\) 0 0
\(559\) −2.78687 −0.117872
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.9328 1.05079 0.525396 0.850858i \(-0.323917\pi\)
0.525396 + 0.850858i \(0.323917\pi\)
\(564\) 0 0
\(565\) −5.77193 −0.242827
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.80025 0.410848 0.205424 0.978673i \(-0.434143\pi\)
0.205424 + 0.978673i \(0.434143\pi\)
\(570\) 0 0
\(571\) 40.7895 1.70699 0.853494 0.521103i \(-0.174479\pi\)
0.853494 + 0.521103i \(0.174479\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.254841 0.0106276
\(576\) 0 0
\(577\) −10.2505 + 17.7544i −0.426734 + 0.739125i −0.996581 0.0826259i \(-0.973669\pi\)
0.569846 + 0.821751i \(0.307003\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21.9201 + 9.19914i 0.909399 + 0.381645i
\(582\) 0 0
\(583\) −40.3086 −1.66941
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.2916 + 33.4141i −0.796251 + 1.37915i 0.125791 + 0.992057i \(0.459853\pi\)
−0.922042 + 0.387090i \(0.873480\pi\)
\(588\) 0 0
\(589\) 11.1673 + 19.3423i 0.460141 + 0.796987i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.26539 + 2.19172i 0.0519634 + 0.0900032i 0.890837 0.454323i \(-0.150119\pi\)
−0.838874 + 0.544326i \(0.816785\pi\)
\(594\) 0 0
\(595\) −6.10693 + 4.64109i −0.250360 + 0.190266i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.0218 −0.654634 −0.327317 0.944915i \(-0.606145\pi\)
−0.327317 + 0.944915i \(0.606145\pi\)
\(600\) 0 0
\(601\) −22.1601 + 38.3824i −0.903929 + 1.56565i −0.0815796 + 0.996667i \(0.525996\pi\)
−0.822349 + 0.568983i \(0.807337\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.69758 + 4.67235i 0.109672 + 0.189958i
\(606\) 0 0
\(607\) −4.79607 + 8.30704i −0.194666 + 0.337172i −0.946791 0.321849i \(-0.895696\pi\)
0.752125 + 0.659021i \(0.229029\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.24897 3.89533i −0.0909835 0.157588i
\(612\) 0 0
\(613\) 11.2371 19.4632i 0.453861 0.786110i −0.544761 0.838591i \(-0.683380\pi\)
0.998622 + 0.0524815i \(0.0167131\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.7056 20.2746i −0.471248 0.816226i 0.528211 0.849113i \(-0.322863\pi\)
−0.999459 + 0.0328875i \(0.989530\pi\)
\(618\) 0 0
\(619\) 7.98843 + 13.8364i 0.321082 + 0.556131i 0.980712 0.195460i \(-0.0626201\pi\)
−0.659629 + 0.751591i \(0.729287\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29.7074 + 22.5768i −1.19020 + 0.904521i
\(624\) 0 0
\(625\) −10.4632 + 18.1227i −0.418527 + 0.724910i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.46622 −0.0983348
\(630\) 0 0
\(631\) 0.882517 0.0351324 0.0175662 0.999846i \(-0.494408\pi\)
0.0175662 + 0.999846i \(0.494408\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.36864 7.56671i 0.173364 0.300276i
\(636\) 0 0
\(637\) −2.39836 2.44335i −0.0950265 0.0968090i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.2141 + 35.0118i 0.798408 + 1.38288i 0.920652 + 0.390384i \(0.127658\pi\)
−0.122244 + 0.992500i \(0.539009\pi\)
\(642\) 0 0
\(643\) −2.99047 5.17964i −0.117932 0.204265i 0.801016 0.598643i \(-0.204293\pi\)
−0.918948 + 0.394378i \(0.870960\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.4743 + 28.5343i −0.647672 + 1.12180i 0.336005 + 0.941860i \(0.390924\pi\)
−0.983677 + 0.179941i \(0.942409\pi\)
\(648\) 0 0
\(649\) 15.2856 + 26.4755i 0.600014 + 1.03925i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.0166 22.5455i 0.509380 0.882272i −0.490561 0.871407i \(-0.663208\pi\)
0.999941 0.0108653i \(-0.00345861\pi\)
\(654\) 0 0
\(655\) 1.52987 + 2.64982i 0.0597771 + 0.103537i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.91651 8.51565i 0.191520 0.331722i −0.754234 0.656606i \(-0.771992\pi\)
0.945754 + 0.324883i \(0.105325\pi\)
\(660\) 0 0
\(661\) −5.51520 −0.214516 −0.107258 0.994231i \(-0.534207\pi\)
−0.107258 + 0.994231i \(0.534207\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.644111 5.07458i −0.0249776 0.196784i
\(666\) 0 0
\(667\) −0.177222 0.306958i −0.00686208 0.0118855i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.07339 + 1.85916i 0.0414376 + 0.0717720i
\(672\) 0 0
\(673\) 19.6176 33.9788i 0.756205 1.30978i −0.188569 0.982060i \(-0.560385\pi\)
0.944773 0.327725i \(-0.106282\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.1632 1.42830 0.714149 0.699994i \(-0.246814\pi\)
0.714149 + 0.699994i \(0.246814\pi\)
\(678\) 0 0
\(679\) 25.4899 + 10.6973i 0.978211 + 0.410523i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.10586 + 8.84360i −0.195370 + 0.338391i −0.947022 0.321169i \(-0.895924\pi\)
0.751652 + 0.659560i \(0.229257\pi\)
\(684\) 0 0
\(685\) −4.85305 −0.185426
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.27615 0.162908
\(690\) 0 0
\(691\) 35.0761 1.33436 0.667179 0.744897i \(-0.267501\pi\)
0.667179 + 0.744897i \(0.267501\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.24284 −0.274737
\(696\) 0 0
\(697\) 27.8097 1.05337
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17.2500 −0.651522 −0.325761 0.945452i \(-0.605621\pi\)
−0.325761 + 0.945452i \(0.605621\pi\)
\(702\) 0 0
\(703\) 0.822352 1.42436i 0.0310156 0.0537206i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.9912 15.9527i 0.789455 0.599964i
\(708\) 0 0
\(709\) −14.5147 −0.545110 −0.272555 0.962140i \(-0.587869\pi\)
−0.272555 + 0.962140i \(0.587869\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.163922 + 0.283921i −0.00613893 + 0.0106329i
\(714\) 0 0
\(715\) −0.593081 1.02725i −0.0221800 0.0384168i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.4295 38.8491i −0.836480 1.44883i −0.892820 0.450414i \(-0.851277\pi\)
0.0563403 0.998412i \(-0.482057\pi\)
\(720\) 0 0
\(721\) 28.4242 + 11.9287i 1.05857 + 0.444248i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 31.0295 1.15241
\(726\) 0 0
\(727\) 2.22039 3.84582i 0.0823496 0.142634i −0.821909 0.569619i \(-0.807091\pi\)
0.904259 + 0.426985i \(0.140424\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.7021 27.1969i −0.580764 1.00591i
\(732\) 0 0
\(733\) 19.1360 33.1445i 0.706803 1.22422i −0.259233 0.965815i \(-0.583470\pi\)
0.966037 0.258405i \(-0.0831968\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.9725 + 20.7370i 0.441014 + 0.763859i
\(738\) 0 0
\(739\) 2.59381 4.49261i 0.0954148 0.165263i −0.814367 0.580350i \(-0.802916\pi\)
0.909782 + 0.415087i \(0.136249\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.3351 + 28.2932i 0.599276 + 1.03798i 0.992928 + 0.118716i \(0.0378779\pi\)
−0.393653 + 0.919259i \(0.628789\pi\)
\(744\) 0 0
\(745\) 2.18314 + 3.78132i 0.0799842 + 0.138537i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.3452 + 7.86203i −0.378004 + 0.287272i
\(750\) 0 0
\(751\) −8.06106 + 13.9622i −0.294152 + 0.509487i −0.974787 0.223136i \(-0.928371\pi\)
0.680635 + 0.732623i \(0.261704\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.62595 −0.277537
\(756\) 0 0
\(757\) 45.6421 1.65889 0.829444 0.558589i \(-0.188657\pi\)
0.829444 + 0.558589i \(0.188657\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.11500 10.5915i 0.221669 0.383942i −0.733646 0.679532i \(-0.762183\pi\)
0.955315 + 0.295590i \(0.0955163\pi\)
\(762\) 0 0
\(763\) −47.6387 19.9924i −1.72464 0.723773i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.62158 2.80866i −0.0585518 0.101415i
\(768\) 0 0
\(769\) 3.17344 + 5.49656i 0.114437 + 0.198211i 0.917555 0.397610i \(-0.130160\pi\)
−0.803117 + 0.595821i \(0.796827\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −24.4515 + 42.3512i −0.879459 + 1.52327i −0.0275225 + 0.999621i \(0.508762\pi\)
−0.851936 + 0.523646i \(0.824572\pi\)
\(774\) 0 0
\(775\) −14.3504 24.8556i −0.515481 0.892839i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.27302 + 16.0613i −0.332240 + 0.575457i
\(780\) 0 0
\(781\) −4.06483 7.04049i −0.145451 0.251928i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.28455 + 5.68900i −0.117231 + 0.203049i
\(786\) 0 0
\(787\) 23.1498 0.825201 0.412600 0.910912i \(-0.364621\pi\)
0.412600 + 0.910912i \(0.364621\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.1147 17.5665i 0.821864 0.624594i
\(792\) 0 0
\(793\) −0.113870 0.197229i −0.00404365 0.00700381i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.2284 41.9648i −0.858214 1.48647i −0.873631 0.486589i \(-0.838241\pi\)
0.0154170 0.999881i \(-0.495092\pi\)