# Properties

 Label 3024.2.q.l.2881.7 Level $3024$ Weight $2$ Character 3024.2881 Analytic conductor $24.147$ Analytic rank $0$ Dimension $22$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$22$$ Relative dimension: $$11$$ over $$\Q(\zeta_{3})$$ Twist minimal: no (minimal twist has level 504) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 2881.7 Character $$\chi$$ $$=$$ 3024.2881 Dual form 3024.2.q.l.2305.7

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.263002 - 0.455533i) q^{5} +(0.333150 + 2.62469i) q^{7} +O(q^{10})$$ $$q+(0.263002 - 0.455533i) q^{5} +(0.333150 + 2.62469i) q^{7} +(-2.30526 - 3.99283i) q^{11} +(0.244554 + 0.423580i) q^{13} +(-2.75579 + 4.77318i) q^{17} +(-1.83782 - 3.18319i) q^{19} +(0.0269769 - 0.0467253i) q^{23} +(2.36166 + 4.09051i) q^{25} +(3.28471 - 5.68929i) q^{29} -6.07640 q^{31} +(1.28325 + 0.538539i) q^{35} +(0.223731 + 0.387513i) q^{37} +(-2.52284 - 4.36968i) q^{41} +(-2.84893 + 4.93449i) q^{43} -9.19621 q^{47} +(-6.77802 + 1.74883i) q^{49} +(4.37138 - 7.57145i) q^{53} -2.42515 q^{55} -6.63076 q^{59} -0.465625 q^{61} +0.257273 q^{65} -5.19358 q^{67} +1.76328 q^{71} +(-5.23776 + 9.07207i) q^{73} +(9.71195 - 7.38081i) q^{77} -16.3702 q^{79} +(4.49251 - 7.78126i) q^{83} +(1.44956 + 2.51071i) q^{85} +(7.05145 + 12.2135i) q^{89} +(-1.03029 + 0.782994i) q^{91} -1.93340 q^{95} +(5.22413 - 9.04847i) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$22q - q^{5} - 5q^{7} + O(q^{10})$$ $$22q - q^{5} - 5q^{7} + 3q^{11} + 7q^{13} + q^{17} - 13q^{19} - 22q^{25} + 7q^{29} + 12q^{31} + 2q^{35} + 6q^{37} - 4q^{41} - 2q^{43} - 34q^{47} - 25q^{49} - q^{53} - 2q^{55} + 42q^{59} - 62q^{61} - 6q^{65} - 52q^{67} - 32q^{71} + 17q^{73} + q^{77} - 32q^{79} - 36q^{83} + 28q^{85} + 2q^{89} - 15q^{91} + 48q^{95} + 19q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1135$$ $$2593$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0.263002 0.455533i 0.117618 0.203721i −0.801205 0.598390i $$-0.795807\pi$$
0.918823 + 0.394669i $$0.129141\pi$$
$$6$$ 0 0
$$7$$ 0.333150 + 2.62469i 0.125919 + 0.992041i
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −2.30526 3.99283i −0.695062 1.20388i −0.970160 0.242466i $$-0.922044\pi$$
0.275098 0.961416i $$-0.411290\pi$$
$$12$$ 0 0
$$13$$ 0.244554 + 0.423580i 0.0678270 + 0.117480i 0.897945 0.440109i $$-0.145060\pi$$
−0.830118 + 0.557588i $$0.811727\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −2.75579 + 4.77318i −0.668378 + 1.15767i 0.309979 + 0.950743i $$0.399678\pi$$
−0.978357 + 0.206922i $$0.933655\pi$$
$$18$$ 0 0
$$19$$ −1.83782 3.18319i −0.421624 0.730274i 0.574475 0.818522i $$-0.305206\pi$$
−0.996099 + 0.0882484i $$0.971873\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0.0269769 0.0467253i 0.00562506 0.00974289i −0.863199 0.504864i $$-0.831543\pi$$
0.868824 + 0.495121i $$0.164876\pi$$
$$24$$ 0 0
$$25$$ 2.36166 + 4.09051i 0.472332 + 0.818103i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 3.28471 5.68929i 0.609956 1.05647i −0.381292 0.924455i $$-0.624521\pi$$
0.991247 0.132019i $$-0.0421461\pi$$
$$30$$ 0 0
$$31$$ −6.07640 −1.09135 −0.545676 0.837996i $$-0.683727\pi$$
−0.545676 + 0.837996i $$0.683727\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 1.28325 + 0.538539i 0.216909 + 0.0910297i
$$36$$ 0 0
$$37$$ 0.223731 + 0.387513i 0.0367811 + 0.0637068i 0.883830 0.467808i $$-0.154956\pi$$
−0.847049 + 0.531515i $$0.821623\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −2.52284 4.36968i −0.394001 0.682430i 0.598972 0.800770i $$-0.295576\pi$$
−0.992973 + 0.118340i $$0.962243\pi$$
$$42$$ 0 0
$$43$$ −2.84893 + 4.93449i −0.434458 + 0.752503i −0.997251 0.0740947i $$-0.976393\pi$$
0.562794 + 0.826598i $$0.309727\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −9.19621 −1.34140 −0.670702 0.741726i $$-0.734007\pi$$
−0.670702 + 0.741726i $$0.734007\pi$$
$$48$$ 0 0
$$49$$ −6.77802 + 1.74883i −0.968289 + 0.249833i
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 4.37138 7.57145i 0.600455 1.04002i −0.392297 0.919839i $$-0.628320\pi$$
0.992752 0.120180i $$-0.0383471\pi$$
$$54$$ 0 0
$$55$$ −2.42515 −0.327008
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −6.63076 −0.863252 −0.431626 0.902053i $$-0.642060\pi$$
−0.431626 + 0.902053i $$0.642060\pi$$
$$60$$ 0 0
$$61$$ −0.465625 −0.0596171 −0.0298086 0.999556i $$-0.509490\pi$$
−0.0298086 + 0.999556i $$0.509490\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0.257273 0.0319108
$$66$$ 0 0
$$67$$ −5.19358 −0.634496 −0.317248 0.948343i $$-0.602759\pi$$
−0.317248 + 0.948343i $$0.602759\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 1.76328 0.209263 0.104632 0.994511i $$-0.466634\pi$$
0.104632 + 0.994511i $$0.466634\pi$$
$$72$$ 0 0
$$73$$ −5.23776 + 9.07207i −0.613034 + 1.06181i 0.377692 + 0.925931i $$0.376718\pi$$
−0.990726 + 0.135875i $$0.956616\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 9.71195 7.38081i 1.10678 0.841121i
$$78$$ 0 0
$$79$$ −16.3702 −1.84179 −0.920895 0.389812i $$-0.872540\pi$$
−0.920895 + 0.389812i $$0.872540\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 4.49251 7.78126i 0.493117 0.854104i −0.506851 0.862034i $$-0.669191\pi$$
0.999969 + 0.00792925i $$0.00252399\pi$$
$$84$$ 0 0
$$85$$ 1.44956 + 2.51071i 0.157227 + 0.272325i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 7.05145 + 12.2135i 0.747452 + 1.29463i 0.949040 + 0.315155i $$0.102056\pi$$
−0.201588 + 0.979470i $$0.564610\pi$$
$$90$$ 0 0
$$91$$ −1.03029 + 0.782994i −0.108004 + 0.0820801i
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −1.93340 −0.198363
$$96$$ 0 0
$$97$$ 5.22413 9.04847i 0.530430 0.918732i −0.468939 0.883230i $$-0.655364\pi$$
0.999370 0.0355020i $$-0.0113030\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −4.98254 8.63001i −0.495781 0.858718i 0.504207 0.863583i $$-0.331785\pi$$
−0.999988 + 0.00486475i $$0.998451\pi$$
$$102$$ 0 0
$$103$$ 5.82553 10.0901i 0.574006 0.994208i −0.422143 0.906529i $$-0.638722\pi$$
0.996149 0.0876783i $$-0.0279448\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 2.45556 + 4.25316i 0.237388 + 0.411168i 0.959964 0.280123i $$-0.0903754\pi$$
−0.722576 + 0.691292i $$0.757042\pi$$
$$108$$ 0 0
$$109$$ −9.76353 + 16.9109i −0.935177 + 1.61977i −0.160858 + 0.986978i $$0.551426\pi$$
−0.774319 + 0.632796i $$0.781907\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −5.48658 9.50304i −0.516134 0.893971i −0.999825 0.0187317i $$-0.994037\pi$$
0.483690 0.875239i $$-0.339296\pi$$
$$114$$ 0 0
$$115$$ −0.0141899 0.0245777i −0.00132322 0.00229188i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −13.4462 5.64293i −1.23261 0.517287i
$$120$$ 0 0
$$121$$ −5.12844 + 8.88272i −0.466222 + 0.807520i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 5.11451 0.457456
$$126$$ 0 0
$$127$$ 16.6107 1.47396 0.736979 0.675915i $$-0.236252\pi$$
0.736979 + 0.675915i $$0.236252\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −2.90848 + 5.03763i −0.254115 + 0.440140i −0.964655 0.263517i $$-0.915117\pi$$
0.710540 + 0.703657i $$0.248451\pi$$
$$132$$ 0 0
$$133$$ 7.74263 5.88418i 0.671371 0.510223i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −4.61313 7.99017i −0.394126 0.682647i 0.598863 0.800852i $$-0.295619\pi$$
−0.992989 + 0.118205i $$0.962286\pi$$
$$138$$ 0 0
$$139$$ −6.88477 11.9248i −0.583959 1.01145i −0.995004 0.0998314i $$-0.968170\pi$$
0.411046 0.911615i $$-0.365164\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 1.12752 1.95292i 0.0942880 0.163312i
$$144$$ 0 0
$$145$$ −1.72777 2.99259i −0.143484 0.248521i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −4.15043 + 7.18875i −0.340016 + 0.588926i −0.984435 0.175747i $$-0.943766\pi$$
0.644419 + 0.764673i $$0.277099\pi$$
$$150$$ 0 0
$$151$$ −7.24894 12.5555i −0.589911 1.02176i −0.994244 0.107143i $$-0.965830\pi$$
0.404333 0.914612i $$-0.367504\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −1.59811 + 2.76800i −0.128363 + 0.222331i
$$156$$ 0 0
$$157$$ −12.4887 −0.996705 −0.498352 0.866975i $$-0.666061\pi$$
−0.498352 + 0.866975i $$0.666061\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0.131627 + 0.0552394i 0.0103736 + 0.00435348i
$$162$$ 0 0
$$163$$ 2.48448 + 4.30325i 0.194600 + 0.337057i 0.946769 0.321913i $$-0.104326\pi$$
−0.752169 + 0.658970i $$0.770993\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −10.0088 17.3357i −0.774504 1.34148i −0.935073 0.354456i $$-0.884666\pi$$
0.160569 0.987025i $$-0.448667\pi$$
$$168$$ 0 0
$$169$$ 6.38039 11.0512i 0.490799 0.850089i
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −9.05485 −0.688427 −0.344214 0.938891i $$-0.611854\pi$$
−0.344214 + 0.938891i $$0.611854\pi$$
$$174$$ 0 0
$$175$$ −9.94956 + 7.56138i −0.752116 + 0.571587i
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −7.69175 + 13.3225i −0.574908 + 0.995770i 0.421143 + 0.906994i $$0.361629\pi$$
−0.996052 + 0.0887763i $$0.971704\pi$$
$$180$$ 0 0
$$181$$ −9.54973 −0.709826 −0.354913 0.934899i $$-0.615489\pi$$
−0.354913 + 0.934899i $$0.615489\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0.235367 0.0173045
$$186$$ 0 0
$$187$$ 25.4113 1.85826
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −11.0433 −0.799063 −0.399531 0.916720i $$-0.630827\pi$$
−0.399531 + 0.916720i $$0.630827\pi$$
$$192$$ 0 0
$$193$$ 26.6991 1.92185 0.960923 0.276817i $$-0.0892796\pi$$
0.960923 + 0.276817i $$0.0892796\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −12.8386 −0.914715 −0.457357 0.889283i $$-0.651204\pi$$
−0.457357 + 0.889283i $$0.651204\pi$$
$$198$$ 0 0
$$199$$ −10.1408 + 17.5644i −0.718864 + 1.24511i 0.242586 + 0.970130i $$0.422004\pi$$
−0.961450 + 0.274979i $$0.911329\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 16.0269 + 6.72597i 1.12487 + 0.472071i
$$204$$ 0 0
$$205$$ −2.65405 −0.185367
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −8.47329 + 14.6762i −0.586109 + 1.01517i
$$210$$ 0 0
$$211$$ −4.77903 8.27752i −0.329002 0.569848i 0.653312 0.757088i $$-0.273379\pi$$
−0.982314 + 0.187241i $$0.940046\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 1.49855 + 2.59556i 0.102200 + 0.177016i
$$216$$ 0 0
$$217$$ −2.02435 15.9487i −0.137422 1.08267i
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −2.69576 −0.181337
$$222$$ 0 0
$$223$$ −11.9155 + 20.6383i −0.797921 + 1.38204i 0.123046 + 0.992401i $$0.460734\pi$$
−0.920968 + 0.389639i $$0.872600\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 1.33567 + 2.31345i 0.0886514 + 0.153549i 0.906941 0.421257i $$-0.138411\pi$$
−0.818290 + 0.574806i $$0.805078\pi$$
$$228$$ 0 0
$$229$$ −3.16258 + 5.47775i −0.208989 + 0.361980i −0.951396 0.307969i $$-0.900351\pi$$
0.742407 + 0.669949i $$0.233684\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −4.63381 8.02600i −0.303571 0.525801i 0.673371 0.739305i $$-0.264846\pi$$
−0.976942 + 0.213504i $$0.931512\pi$$
$$234$$ 0 0
$$235$$ −2.41862 + 4.18918i −0.157774 + 0.273272i
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 1.69219 + 2.93096i 0.109459 + 0.189588i 0.915551 0.402202i $$-0.131755\pi$$
−0.806092 + 0.591790i $$0.798422\pi$$
$$240$$ 0 0
$$241$$ −6.57982 11.3966i −0.423844 0.734119i 0.572468 0.819927i $$-0.305986\pi$$
−0.996312 + 0.0858082i $$0.972653\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ −0.985984 + 3.54756i −0.0629922 + 0.226645i
$$246$$ 0 0
$$247$$ 0.898890 1.55692i 0.0571950 0.0990647i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −2.30235 −0.145323 −0.0726614 0.997357i $$-0.523149\pi$$
−0.0726614 + 0.997357i $$0.523149\pi$$
$$252$$ 0 0
$$253$$ −0.248755 −0.0156391
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −14.5661 + 25.2293i −0.908610 + 1.57376i −0.0926132 + 0.995702i $$0.529522\pi$$
−0.815997 + 0.578056i $$0.803811\pi$$
$$258$$ 0 0
$$259$$ −0.942567 + 0.716324i −0.0585683 + 0.0445102i
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 1.35919 + 2.35418i 0.0838110 + 0.145165i 0.904884 0.425658i $$-0.139957\pi$$
−0.821073 + 0.570823i $$0.806624\pi$$
$$264$$ 0 0
$$265$$ −2.29936 3.98261i −0.141249 0.244650i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −2.80840 + 4.86428i −0.171231 + 0.296581i −0.938850 0.344325i $$-0.888108\pi$$
0.767620 + 0.640906i $$0.221441\pi$$
$$270$$ 0 0
$$271$$ 7.25164 + 12.5602i 0.440506 + 0.762978i 0.997727 0.0673860i $$-0.0214659\pi$$
−0.557221 + 0.830364i $$0.688133\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 10.8885 18.8594i 0.656600 1.13726i
$$276$$ 0 0
$$277$$ 0.873953 + 1.51373i 0.0525108 + 0.0909513i 0.891086 0.453835i $$-0.149944\pi$$
−0.838575 + 0.544786i $$0.816611\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −5.35657 + 9.27786i −0.319546 + 0.553471i −0.980393 0.197050i $$-0.936864\pi$$
0.660847 + 0.750521i $$0.270197\pi$$
$$282$$ 0 0
$$283$$ 12.5967 0.748793 0.374397 0.927269i $$-0.377850\pi$$
0.374397 + 0.927269i $$0.377850\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 10.6286 8.07743i 0.627386 0.476796i
$$288$$ 0 0
$$289$$ −6.68881 11.5854i −0.393459 0.681491i
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 1.57575 + 2.72928i 0.0920562 + 0.159446i 0.908376 0.418154i $$-0.137323\pi$$
−0.816320 + 0.577600i $$0.803989\pi$$
$$294$$ 0 0
$$295$$ −1.74391 + 3.02053i −0.101534 + 0.175862i
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0.0263892 0.00152613
$$300$$ 0 0
$$301$$ −13.9006 5.83364i −0.801220 0.336245i
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −0.122460 + 0.212107i −0.00701206 + 0.0121452i
$$306$$ 0 0
$$307$$ 20.3884 1.16363 0.581813 0.813322i $$-0.302343\pi$$
0.581813 + 0.813322i $$0.302343\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 22.7014 1.28728 0.643640 0.765328i $$-0.277423\pi$$
0.643640 + 0.765328i $$0.277423\pi$$
$$312$$ 0 0
$$313$$ −16.7078 −0.944380 −0.472190 0.881497i $$-0.656536\pi$$
−0.472190 + 0.881497i $$0.656536\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −10.3280 −0.580080 −0.290040 0.957015i $$-0.593669\pi$$
−0.290040 + 0.957015i $$0.593669\pi$$
$$318$$ 0 0
$$319$$ −30.2884 −1.69583
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 20.2586 1.12722
$$324$$ 0 0
$$325$$ −1.15511 + 2.00070i −0.0640738 + 0.110979i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −3.06371 24.1372i −0.168908 1.33073i
$$330$$ 0 0
$$331$$ 22.6315 1.24394 0.621970 0.783041i $$-0.286332\pi$$
0.621970 + 0.783041i $$0.286332\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −1.36592 + 2.36585i −0.0746283 + 0.129260i
$$336$$ 0 0
$$337$$ 6.78253 + 11.7477i 0.369468 + 0.639938i 0.989482 0.144653i $$-0.0462066\pi$$
−0.620014 + 0.784590i $$0.712873\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 14.0077 + 24.2620i 0.758558 + 1.31386i
$$342$$ 0 0
$$343$$ −6.84824 17.2076i −0.369770 0.929123i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −33.0262 −1.77294 −0.886470 0.462786i $$-0.846850\pi$$
−0.886470 + 0.462786i $$0.846850\pi$$
$$348$$ 0 0
$$349$$ −10.1773 + 17.6276i −0.544778 + 0.943584i 0.453842 + 0.891082i $$0.350053\pi$$
−0.998621 + 0.0525019i $$0.983280\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −2.75381 4.76975i −0.146571 0.253868i 0.783387 0.621534i $$-0.213490\pi$$
−0.929958 + 0.367666i $$0.880157\pi$$
$$354$$ 0 0
$$355$$ 0.463748 0.803234i 0.0246132 0.0426312i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −10.4656 18.1270i −0.552354 0.956704i −0.998104 0.0615472i $$-0.980397\pi$$
0.445751 0.895157i $$-0.352937\pi$$
$$360$$ 0 0
$$361$$ 2.74486 4.75424i 0.144467 0.250223i
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 2.75509 + 4.77195i 0.144208 + 0.249775i
$$366$$ 0 0
$$367$$ 2.14319 + 3.71211i 0.111873 + 0.193770i 0.916526 0.399976i $$-0.130982\pi$$
−0.804652 + 0.593746i $$0.797648\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 21.3290 + 8.95110i 1.10735 + 0.464718i
$$372$$ 0 0
$$373$$ 5.64461 9.77675i 0.292267 0.506221i −0.682079 0.731279i $$-0.738924\pi$$
0.974345 + 0.225058i $$0.0722571\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 3.21316 0.165486
$$378$$ 0 0
$$379$$ 20.5828 1.05727 0.528634 0.848850i $$-0.322705\pi$$
0.528634 + 0.848850i $$0.322705\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 10.8108 18.7248i 0.552405 0.956793i −0.445696 0.895184i $$-0.647044\pi$$
0.998100 0.0616083i $$-0.0196230\pi$$
$$384$$ 0 0
$$385$$ −0.807939 6.36528i −0.0411764 0.324405i
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −7.34241 12.7174i −0.372275 0.644799i 0.617640 0.786461i $$-0.288089\pi$$
−0.989915 + 0.141662i $$0.954755\pi$$
$$390$$ 0 0
$$391$$ 0.148685 + 0.257531i 0.00751934 + 0.0130239i
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −4.30539 + 7.45716i −0.216628 + 0.375210i
$$396$$ 0 0
$$397$$ −3.13424 5.42866i −0.157303 0.272457i 0.776592 0.630003i $$-0.216947\pi$$
−0.933895 + 0.357547i $$0.883613\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 14.6951 25.4526i 0.733836 1.27104i −0.221396 0.975184i $$-0.571061\pi$$
0.955232 0.295857i $$-0.0956052\pi$$
$$402$$ 0 0
$$403$$ −1.48601 2.57384i −0.0740232 0.128212i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 1.03152 1.78664i 0.0511303 0.0885603i
$$408$$ 0 0
$$409$$ −1.63285 −0.0807392 −0.0403696 0.999185i $$-0.512854\pi$$
−0.0403696 + 0.999185i $$0.512854\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −2.20904 17.4037i −0.108700 0.856381i
$$414$$ 0 0
$$415$$ −2.36308 4.09298i −0.115999 0.200916i
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −9.01823 15.6200i −0.440569 0.763088i 0.557162 0.830404i $$-0.311890\pi$$
−0.997732 + 0.0673151i $$0.978557\pi$$
$$420$$ 0 0
$$421$$ 16.8278 29.1465i 0.820135 1.42052i −0.0854466 0.996343i $$-0.527232\pi$$
0.905581 0.424172i $$-0.139435\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −26.0330 −1.26279
$$426$$ 0 0
$$427$$ −0.155123 1.22212i −0.00750691 0.0591426i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −11.1545 + 19.3202i −0.537295 + 0.930622i 0.461754 + 0.887008i $$0.347220\pi$$
−0.999048 + 0.0436135i $$0.986113\pi$$
$$432$$ 0 0
$$433$$ 7.32414 0.351976 0.175988 0.984392i $$-0.443688\pi$$
0.175988 + 0.984392i $$0.443688\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −0.198314 −0.00948664
$$438$$ 0 0
$$439$$ 24.6728 1.17757 0.588785 0.808289i $$-0.299606\pi$$
0.588785 + 0.808289i $$0.299606\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 30.5363 1.45082 0.725412 0.688315i $$-0.241649\pi$$
0.725412 + 0.688315i $$0.241649\pi$$
$$444$$ 0 0
$$445$$ 7.41819 0.351656
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 41.4782 1.95748 0.978738 0.205116i $$-0.0657572\pi$$
0.978738 + 0.205116i $$0.0657572\pi$$
$$450$$ 0 0
$$451$$ −11.6316 + 20.1465i −0.547710 + 0.948662i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0.0857103 + 0.675262i 0.00401816 + 0.0316568i
$$456$$ 0 0
$$457$$ −11.6289 −0.543978 −0.271989 0.962300i $$-0.587681\pi$$
−0.271989 + 0.962300i $$0.587681\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 5.60886 9.71483i 0.261231 0.452465i −0.705339 0.708871i $$-0.749205\pi$$
0.966569 + 0.256406i $$0.0825383\pi$$
$$462$$ 0 0
$$463$$ 19.9362 + 34.5305i 0.926514 + 1.60477i 0.789108 + 0.614254i $$0.210543\pi$$
0.137405 + 0.990515i $$0.456124\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 11.7818 + 20.4067i 0.545198 + 0.944311i 0.998594 + 0.0530016i $$0.0168788\pi$$
−0.453397 + 0.891309i $$0.649788\pi$$
$$468$$ 0 0
$$469$$ −1.73024 13.6315i −0.0798950 0.629446i
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 26.2701 1.20790
$$474$$ 0 0
$$475$$ 8.68059 15.0352i 0.398293 0.689864i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −7.11485 12.3233i −0.325086 0.563065i 0.656444 0.754375i $$-0.272060\pi$$
−0.981530 + 0.191310i $$0.938727\pi$$
$$480$$ 0 0
$$481$$ −0.109428 + 0.189536i −0.00498951 + 0.00864208i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −2.74792 4.75953i −0.124776 0.216119i
$$486$$ 0 0
$$487$$ 13.9818 24.2171i 0.633574 1.09738i −0.353242 0.935532i $$-0.614921\pi$$
0.986815 0.161850i $$-0.0517460\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 17.2543 + 29.8853i 0.778676 + 1.34871i 0.932705 + 0.360639i $$0.117442\pi$$
−0.154030 + 0.988066i $$0.549225\pi$$
$$492$$ 0 0
$$493$$ 18.1040 + 31.3570i 0.815362 + 1.41225i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0.587437 + 4.62808i 0.0263502 + 0.207598i
$$498$$ 0 0
$$499$$ 13.1436 22.7654i 0.588390 1.01912i −0.406054 0.913849i $$-0.633095\pi$$
0.994443 0.105272i $$-0.0335712\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 6.09068 0.271570 0.135785 0.990738i $$-0.456644\pi$$
0.135785 + 0.990738i $$0.456644\pi$$
$$504$$ 0 0
$$505$$ −5.24167 −0.233251
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −4.08615 + 7.07742i −0.181116 + 0.313701i −0.942261 0.334880i $$-0.891304\pi$$
0.761145 + 0.648582i $$0.224637\pi$$
$$510$$ 0 0
$$511$$ −25.5564 10.7252i −1.13055 0.474453i
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −3.06425 5.30744i −0.135027 0.233874i
$$516$$ 0 0
$$517$$ 21.1996 + 36.7189i 0.932360 + 1.61489i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −13.0485 + 22.6007i −0.571666 + 0.990155i 0.424729 + 0.905321i $$0.360370\pi$$
−0.996395 + 0.0848346i $$0.972964\pi$$
$$522$$ 0 0
$$523$$ −13.6655 23.6694i −0.597553 1.03499i −0.993181 0.116581i $$-0.962807\pi$$
0.395628 0.918411i $$-0.370527\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 16.7453 29.0037i 0.729437 1.26342i
$$528$$ 0 0
$$529$$ 11.4985 + 19.9161i 0.499937 + 0.865916i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 1.23394 2.13725i 0.0534478 0.0925744i
$$534$$ 0 0
$$535$$ 2.58327 0.111685
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 22.6079 + 23.0320i 0.973790 + 0.992057i
$$540$$ 0 0
$$541$$ −5.79086 10.0301i −0.248969 0.431226i 0.714271 0.699869i $$-0.246758\pi$$
−0.963240 + 0.268643i $$0.913425\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 5.13566 + 8.89522i 0.219987 + 0.381029i
$$546$$ 0 0
$$547$$ −20.3651 + 35.2734i −0.870750 + 1.50818i −0.00952755 + 0.999955i $$0.503033\pi$$
−0.861222 + 0.508228i $$0.830301\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −24.1468 −1.02869
$$552$$ 0 0
$$553$$ −5.45372 42.9667i −0.231916 1.82713i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −10.0085 + 17.3353i −0.424075 + 0.734520i −0.996334 0.0855533i $$-0.972734\pi$$
0.572258 + 0.820074i $$0.306068\pi$$
$$558$$ 0 0
$$559$$ −2.78687 −0.117872
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 24.9328 1.05079 0.525396 0.850858i $$-0.323917\pi$$
0.525396 + 0.850858i $$0.323917\pi$$
$$564$$ 0 0
$$565$$ −5.77193 −0.242827
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 9.80025 0.410848 0.205424 0.978673i $$-0.434143\pi$$
0.205424 + 0.978673i $$0.434143\pi$$
$$570$$ 0 0
$$571$$ 40.7895 1.70699 0.853494 0.521103i $$-0.174479\pi$$
0.853494 + 0.521103i $$0.174479\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0.254841 0.0106276
$$576$$ 0 0
$$577$$ −10.2505 + 17.7544i −0.426734 + 0.739125i −0.996581 0.0826259i $$-0.973669\pi$$
0.569846 + 0.821751i $$0.307003\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 21.9201 + 9.19914i 0.909399 + 0.381645i
$$582$$ 0 0
$$583$$ −40.3086 −1.66941
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −19.2916 + 33.4141i −0.796251 + 1.37915i 0.125791 + 0.992057i $$0.459853\pi$$
−0.922042 + 0.387090i $$0.873480\pi$$
$$588$$ 0 0
$$589$$ 11.1673 + 19.3423i 0.460141 + 0.796987i
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 1.26539 + 2.19172i 0.0519634 + 0.0900032i 0.890837 0.454323i $$-0.150119\pi$$
−0.838874 + 0.544326i $$0.816785\pi$$
$$594$$ 0 0
$$595$$ −6.10693 + 4.64109i −0.250360 + 0.190266i
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −16.0218 −0.654634 −0.327317 0.944915i $$-0.606145\pi$$
−0.327317 + 0.944915i $$0.606145\pi$$
$$600$$ 0 0
$$601$$ −22.1601 + 38.3824i −0.903929 + 1.56565i −0.0815796 + 0.996667i $$0.525996\pi$$
−0.822349 + 0.568983i $$0.807337\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 2.69758 + 4.67235i 0.109672 + 0.189958i
$$606$$ 0 0
$$607$$ −4.79607 + 8.30704i −0.194666 + 0.337172i −0.946791 0.321849i $$-0.895696\pi$$
0.752125 + 0.659021i $$0.229029\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −2.24897 3.89533i −0.0909835 0.157588i
$$612$$ 0 0
$$613$$ 11.2371 19.4632i 0.453861 0.786110i −0.544761 0.838591i $$-0.683380\pi$$
0.998622 + 0.0524815i $$0.0167131\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −11.7056 20.2746i −0.471248 0.816226i 0.528211 0.849113i $$-0.322863\pi$$
−0.999459 + 0.0328875i $$0.989530\pi$$
$$618$$ 0 0
$$619$$ 7.98843 + 13.8364i 0.321082 + 0.556131i 0.980712 0.195460i $$-0.0626201\pi$$
−0.659629 + 0.751591i $$0.729287\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −29.7074 + 22.5768i −1.19020 + 0.904521i
$$624$$ 0 0
$$625$$ −10.4632 + 18.1227i −0.418527 + 0.724910i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −2.46622 −0.0983348
$$630$$ 0 0
$$631$$ 0.882517 0.0351324 0.0175662 0.999846i $$-0.494408\pi$$
0.0175662 + 0.999846i $$0.494408\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 4.36864 7.56671i 0.173364 0.300276i
$$636$$ 0 0
$$637$$ −2.39836 2.44335i −0.0950265 0.0968090i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 20.2141 + 35.0118i 0.798408 + 1.38288i 0.920652 + 0.390384i $$0.127658\pi$$
−0.122244 + 0.992500i $$0.539009\pi$$
$$642$$ 0 0
$$643$$ −2.99047 5.17964i −0.117932 0.204265i 0.801016 0.598643i $$-0.204293\pi$$
−0.918948 + 0.394378i $$0.870960\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −16.4743 + 28.5343i −0.647672 + 1.12180i 0.336005 + 0.941860i $$0.390924\pi$$
−0.983677 + 0.179941i $$0.942409\pi$$
$$648$$ 0 0
$$649$$ 15.2856 + 26.4755i 0.600014 + 1.03925i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 13.0166 22.5455i 0.509380 0.882272i −0.490561 0.871407i $$-0.663208\pi$$
0.999941 0.0108653i $$-0.00345861\pi$$
$$654$$ 0 0
$$655$$ 1.52987 + 2.64982i 0.0597771 + 0.103537i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 4.91651 8.51565i 0.191520 0.331722i −0.754234 0.656606i $$-0.771992\pi$$
0.945754 + 0.324883i $$0.105325\pi$$
$$660$$ 0 0
$$661$$ −5.51520 −0.214516 −0.107258 0.994231i $$-0.534207\pi$$
−0.107258 + 0.994231i $$0.534207\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ −0.644111 5.07458i −0.0249776 0.196784i
$$666$$ 0 0
$$667$$ −0.177222 0.306958i −0.00686208 0.0118855i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 1.07339 + 1.85916i 0.0414376 + 0.0717720i
$$672$$ 0 0
$$673$$ 19.6176 33.9788i 0.756205 1.30978i −0.188569 0.982060i $$-0.560385\pi$$
0.944773 0.327725i $$-0.106282\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 37.1632 1.42830 0.714149 0.699994i $$-0.246814\pi$$
0.714149 + 0.699994i $$0.246814\pi$$
$$678$$ 0 0
$$679$$ 25.4899 + 10.6973i 0.978211 + 0.410523i
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −5.10586 + 8.84360i −0.195370 + 0.338391i −0.947022 0.321169i $$-0.895924\pi$$
0.751652 + 0.659560i $$0.229257\pi$$
$$684$$ 0 0
$$685$$ −4.85305 −0.185426
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 4.27615 0.162908
$$690$$ 0 0
$$691$$ 35.0761 1.33436 0.667179 0.744897i $$-0.267501\pi$$
0.667179 + 0.744897i $$0.267501\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −7.24284 −0.274737
$$696$$ 0 0
$$697$$ 27.8097 1.05337
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −17.2500 −0.651522 −0.325761 0.945452i $$-0.605621\pi$$
−0.325761 + 0.945452i $$0.605621\pi$$
$$702$$ 0 0
$$703$$ 0.822352 1.42436i 0.0310156 0.0537206i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 20.9912 15.9527i 0.789455 0.599964i
$$708$$ 0 0
$$709$$ −14.5147 −0.545110 −0.272555 0.962140i $$-0.587869\pi$$
−0.272555 + 0.962140i $$0.587869\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ −0.163922 + 0.283921i −0.00613893 + 0.0106329i
$$714$$ 0 0
$$715$$ −0.593081 1.02725i −0.0221800 0.0384168i
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −22.4295 38.8491i −0.836480 1.44883i −0.892820 0.450414i $$-0.851277\pi$$
0.0563403 0.998412i $$-0.482057\pi$$
$$720$$ 0 0
$$721$$ 28.4242 + 11.9287i 1.05857 + 0.444248i
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 31.0295 1.15241
$$726$$ 0 0
$$727$$ 2.22039 3.84582i 0.0823496 0.142634i −0.821909 0.569619i $$-0.807091\pi$$
0.904259 + 0.426985i $$0.140424\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −15.7021 27.1969i −0.580764 1.00591i
$$732$$ 0 0
$$733$$ 19.1360 33.1445i 0.706803 1.22422i −0.259233 0.965815i $$-0.583470\pi$$
0.966037 0.258405i $$-0.0831968\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 11.9725 + 20.7370i 0.441014 + 0.763859i
$$738$$ 0 0
$$739$$ 2.59381 4.49261i 0.0954148 0.165263i −0.814367 0.580350i $$-0.802916\pi$$
0.909782 + 0.415087i $$0.136249\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 16.3351 + 28.2932i 0.599276 + 1.03798i 0.992928 + 0.118716i $$0.0378779\pi$$
−0.393653 + 0.919259i $$0.628789\pi$$
$$744$$ 0 0
$$745$$ 2.18314 + 3.78132i 0.0799842 + 0.138537i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −10.3452 + 7.86203i −0.378004 + 0.287272i
$$750$$ 0 0
$$751$$ −8.06106 + 13.9622i −0.294152 + 0.509487i −0.974787 0.223136i $$-0.928371\pi$$
0.680635 + 0.732623i $$0.261704\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −7.62595 −0.277537
$$756$$ 0 0
$$757$$ 45.6421 1.65889 0.829444 0.558589i $$-0.188657\pi$$
0.829444 + 0.558589i $$0.188657\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 6.11500 10.5915i 0.221669 0.383942i −0.733646 0.679532i $$-0.762183\pi$$
0.955315 + 0.295590i $$0.0955163\pi$$
$$762$$ 0 0
$$763$$ −47.6387 19.9924i −1.72464 0.723773i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −1.62158 2.80866i −0.0585518 0.101415i
$$768$$ 0 0
$$769$$ 3.17344 + 5.49656i 0.114437 + 0.198211i 0.917555 0.397610i $$-0.130160\pi$$
−0.803117 + 0.595821i $$0.796827\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −24.4515 + 42.3512i −0.879459 + 1.52327i −0.0275225 + 0.999621i $$0.508762\pi$$
−0.851936 + 0.523646i $$0.824572\pi$$
$$774$$ 0 0
$$775$$ −14.3504 24.8556i −0.515481 0.892839i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −9.27302 + 16.0613i −0.332240 + 0.575457i
$$780$$ 0 0
$$781$$ −4.06483 7.04049i −0.145451 0.251928i
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −3.28455 + 5.68900i −0.117231 + 0.203049i
$$786$$ 0 0
$$787$$ 23.1498 0.825201 0.412600 0.910912i $$-0.364621\pi$$
0.412600 + 0.910912i $$0.364621\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 23.1147 17.5665i 0.821864 0.624594i
$$792$$ 0 0
$$793$$ −0.113870 0.197229i −0.00404365 0.00700381i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −24.2284 41.9648i −0.858214 1.48647i −0.873631 0.486589i $$-0.838241\pi$$
0.0154170 0.999881i $$-0.495092\pi$$