Properties

Label 3024.2.q.l.2881.1
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.1
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.l.2305.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.11148 + 3.65719i) q^{5} +(-2.19338 - 1.47956i) q^{7} +O(q^{10})\) \(q+(-2.11148 + 3.65719i) q^{5} +(-2.19338 - 1.47956i) q^{7} +(-0.964575 - 1.67069i) q^{11} +(-0.291529 - 0.504943i) q^{13} +(-3.61082 + 6.25412i) q^{17} +(-2.10268 - 3.64194i) q^{19} +(-0.639939 + 1.10841i) q^{23} +(-6.41671 - 11.1141i) q^{25} +(4.20305 - 7.27990i) q^{29} +0.952121 q^{31} +(10.0423 - 4.89755i) q^{35} +(3.03329 + 5.25381i) q^{37} +(-1.31299 - 2.27416i) q^{41} +(-0.442349 + 0.766171i) q^{43} +5.76401 q^{47} +(2.62182 + 6.49046i) q^{49} +(0.962456 - 1.66702i) q^{53} +8.14673 q^{55} -4.55229 q^{59} -10.5802 q^{61} +2.46223 q^{65} +4.86383 q^{67} +11.5443 q^{71} +(0.446138 - 0.772734i) q^{73} +(-0.356209 + 5.09160i) q^{77} +11.8704 q^{79} +(-5.24250 + 9.08028i) q^{83} +(-15.2484 - 26.4109i) q^{85} +(-3.87906 - 6.71874i) q^{89} +(-0.107659 + 1.53887i) q^{91} +17.7591 q^{95} +(-1.98651 + 3.44073i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - q^{5} - 5q^{7} + O(q^{10}) \) \( 22q - q^{5} - 5q^{7} + 3q^{11} + 7q^{13} + q^{17} - 13q^{19} - 22q^{25} + 7q^{29} + 12q^{31} + 2q^{35} + 6q^{37} - 4q^{41} - 2q^{43} - 34q^{47} - 25q^{49} - q^{53} - 2q^{55} + 42q^{59} - 62q^{61} - 6q^{65} - 52q^{67} - 32q^{71} + 17q^{73} + q^{77} - 32q^{79} - 36q^{83} + 28q^{85} + 2q^{89} - 15q^{91} + 48q^{95} + 19q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.11148 + 3.65719i −0.944283 + 1.63555i −0.187103 + 0.982340i \(0.559910\pi\)
−0.757180 + 0.653206i \(0.773423\pi\)
\(6\) 0 0
\(7\) −2.19338 1.47956i −0.829019 0.559220i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.964575 1.67069i −0.290830 0.503733i 0.683176 0.730254i \(-0.260598\pi\)
−0.974006 + 0.226521i \(0.927265\pi\)
\(12\) 0 0
\(13\) −0.291529 0.504943i −0.0808557 0.140046i 0.822762 0.568386i \(-0.192432\pi\)
−0.903618 + 0.428340i \(0.859099\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.61082 + 6.25412i −0.875753 + 1.51685i −0.0197936 + 0.999804i \(0.506301\pi\)
−0.855959 + 0.517044i \(0.827032\pi\)
\(18\) 0 0
\(19\) −2.10268 3.64194i −0.482387 0.835519i 0.517408 0.855739i \(-0.326897\pi\)
−0.999796 + 0.0202194i \(0.993564\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.639939 + 1.10841i −0.133437 + 0.231119i −0.924999 0.379969i \(-0.875935\pi\)
0.791563 + 0.611088i \(0.209268\pi\)
\(24\) 0 0
\(25\) −6.41671 11.1141i −1.28334 2.22281i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.20305 7.27990i 0.780487 1.35184i −0.151171 0.988508i \(-0.548305\pi\)
0.931658 0.363335i \(-0.118362\pi\)
\(30\) 0 0
\(31\) 0.952121 0.171006 0.0855030 0.996338i \(-0.472750\pi\)
0.0855030 + 0.996338i \(0.472750\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10.0423 4.89755i 1.69746 0.827837i
\(36\) 0 0
\(37\) 3.03329 + 5.25381i 0.498669 + 0.863721i 0.999999 0.00153588i \(-0.000488885\pi\)
−0.501330 + 0.865256i \(0.667156\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.31299 2.27416i −0.205054 0.355164i 0.745096 0.666957i \(-0.232404\pi\)
−0.950150 + 0.311794i \(0.899070\pi\)
\(42\) 0 0
\(43\) −0.442349 + 0.766171i −0.0674576 + 0.116840i −0.897782 0.440441i \(-0.854822\pi\)
0.830324 + 0.557281i \(0.188155\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.76401 0.840767 0.420384 0.907346i \(-0.361895\pi\)
0.420384 + 0.907346i \(0.361895\pi\)
\(48\) 0 0
\(49\) 2.62182 + 6.49046i 0.374545 + 0.927209i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.962456 1.66702i 0.132204 0.228983i −0.792322 0.610103i \(-0.791128\pi\)
0.924526 + 0.381120i \(0.124461\pi\)
\(54\) 0 0
\(55\) 8.14673 1.09850
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.55229 −0.592657 −0.296329 0.955086i \(-0.595762\pi\)
−0.296329 + 0.955086i \(0.595762\pi\)
\(60\) 0 0
\(61\) −10.5802 −1.35465 −0.677325 0.735684i \(-0.736861\pi\)
−0.677325 + 0.735684i \(0.736861\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.46223 0.305403
\(66\) 0 0
\(67\) 4.86383 0.594211 0.297106 0.954845i \(-0.403979\pi\)
0.297106 + 0.954845i \(0.403979\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.5443 1.37005 0.685027 0.728518i \(-0.259791\pi\)
0.685027 + 0.728518i \(0.259791\pi\)
\(72\) 0 0
\(73\) 0.446138 0.772734i 0.0522165 0.0904417i −0.838736 0.544539i \(-0.816705\pi\)
0.890952 + 0.454097i \(0.150038\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.356209 + 5.09160i −0.0405937 + 0.580242i
\(78\) 0 0
\(79\) 11.8704 1.33553 0.667763 0.744374i \(-0.267252\pi\)
0.667763 + 0.744374i \(0.267252\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.24250 + 9.08028i −0.575439 + 0.996690i 0.420555 + 0.907267i \(0.361836\pi\)
−0.995994 + 0.0894227i \(0.971498\pi\)
\(84\) 0 0
\(85\) −15.2484 26.4109i −1.65392 2.86467i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.87906 6.71874i −0.411180 0.712185i 0.583839 0.811869i \(-0.301550\pi\)
−0.995019 + 0.0996849i \(0.968217\pi\)
\(90\) 0 0
\(91\) −0.107659 + 1.53887i −0.0112857 + 0.161317i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 17.7591 1.82204
\(96\) 0 0
\(97\) −1.98651 + 3.44073i −0.201699 + 0.349353i −0.949076 0.315047i \(-0.897980\pi\)
0.747377 + 0.664400i \(0.231313\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.38533 + 14.5238i 0.834372 + 1.44517i 0.894541 + 0.446986i \(0.147503\pi\)
−0.0601687 + 0.998188i \(0.519164\pi\)
\(102\) 0 0
\(103\) 5.80569 10.0558i 0.572052 0.990823i −0.424303 0.905520i \(-0.639481\pi\)
0.996355 0.0853025i \(-0.0271857\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.2454 17.7455i −0.990460 1.71553i −0.614570 0.788862i \(-0.710671\pi\)
−0.375890 0.926664i \(-0.622663\pi\)
\(108\) 0 0
\(109\) 2.46965 4.27756i 0.236550 0.409716i −0.723172 0.690668i \(-0.757317\pi\)
0.959722 + 0.280951i \(0.0906500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.42131 + 12.8541i 0.698138 + 1.20921i 0.969111 + 0.246623i \(0.0793210\pi\)
−0.270974 + 0.962587i \(0.587346\pi\)
\(114\) 0 0
\(115\) −2.70244 4.68076i −0.252004 0.436484i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 17.1732 8.37524i 1.57427 0.767757i
\(120\) 0 0
\(121\) 3.63919 6.30326i 0.330836 0.573024i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 33.0802 2.95879
\(126\) 0 0
\(127\) 8.53648 0.757490 0.378745 0.925501i \(-0.376356\pi\)
0.378745 + 0.925501i \(0.376356\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.17342 2.03243i 0.102522 0.177574i −0.810201 0.586152i \(-0.800642\pi\)
0.912723 + 0.408578i \(0.133975\pi\)
\(132\) 0 0
\(133\) −0.776499 + 11.0992i −0.0673310 + 0.962422i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.641815 + 1.11166i 0.0548340 + 0.0949752i 0.892139 0.451760i \(-0.149204\pi\)
−0.837305 + 0.546735i \(0.815870\pi\)
\(138\) 0 0
\(139\) −0.610553 1.05751i −0.0517865 0.0896968i 0.838970 0.544177i \(-0.183158\pi\)
−0.890757 + 0.454481i \(0.849825\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.562403 + 0.974111i −0.0470305 + 0.0814593i
\(144\) 0 0
\(145\) 17.7493 + 30.7427i 1.47400 + 2.55305i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.14729 5.45127i 0.257836 0.446585i −0.707826 0.706387i \(-0.750324\pi\)
0.965662 + 0.259802i \(0.0836572\pi\)
\(150\) 0 0
\(151\) 1.17726 + 2.03908i 0.0958044 + 0.165938i 0.909944 0.414731i \(-0.136124\pi\)
−0.814140 + 0.580669i \(0.802791\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.01039 + 3.48209i −0.161478 + 0.279688i
\(156\) 0 0
\(157\) −2.88873 −0.230546 −0.115273 0.993334i \(-0.536774\pi\)
−0.115273 + 0.993334i \(0.536774\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.04358 1.48433i 0.239868 0.116982i
\(162\) 0 0
\(163\) −2.60538 4.51265i −0.204069 0.353458i 0.745767 0.666207i \(-0.232083\pi\)
−0.949836 + 0.312749i \(0.898750\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.5400 + 18.2558i 0.815610 + 1.41268i 0.908889 + 0.417039i \(0.136932\pi\)
−0.0932784 + 0.995640i \(0.529735\pi\)
\(168\) 0 0
\(169\) 6.33002 10.9639i 0.486925 0.843378i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.07305 0.309669 0.154834 0.987940i \(-0.450516\pi\)
0.154834 + 0.987940i \(0.450516\pi\)
\(174\) 0 0
\(175\) −2.36963 + 33.8712i −0.179127 + 2.56042i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.11088 + 5.38821i −0.232518 + 0.402733i −0.958549 0.284929i \(-0.908030\pi\)
0.726030 + 0.687663i \(0.241363\pi\)
\(180\) 0 0
\(181\) 18.2396 1.35574 0.677868 0.735184i \(-0.262904\pi\)
0.677868 + 0.735184i \(0.262904\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −25.6189 −1.88354
\(186\) 0 0
\(187\) 13.9316 1.01878
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.38597 −0.534430 −0.267215 0.963637i \(-0.586103\pi\)
−0.267215 + 0.963637i \(0.586103\pi\)
\(192\) 0 0
\(193\) 19.5182 1.40495 0.702474 0.711709i \(-0.252079\pi\)
0.702474 + 0.711709i \(0.252079\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.77564 −0.553992 −0.276996 0.960871i \(-0.589339\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(198\) 0 0
\(199\) 3.85734 6.68110i 0.273439 0.473611i −0.696301 0.717750i \(-0.745172\pi\)
0.969740 + 0.244139i \(0.0785054\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −19.9899 + 9.74891i −1.40302 + 0.684240i
\(204\) 0 0
\(205\) 11.0894 0.774515
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.05638 + 7.02585i −0.280586 + 0.485989i
\(210\) 0 0
\(211\) −11.7645 20.3767i −0.809899 1.40279i −0.912933 0.408109i \(-0.866188\pi\)
0.103034 0.994678i \(-0.467145\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.86802 3.23551i −0.127398 0.220660i
\(216\) 0 0
\(217\) −2.08836 1.40872i −0.141767 0.0956301i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.21064 0.283238
\(222\) 0 0
\(223\) 4.83093 8.36742i 0.323503 0.560324i −0.657705 0.753275i \(-0.728473\pi\)
0.981208 + 0.192952i \(0.0618061\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.98592 15.5641i −0.596417 1.03302i −0.993345 0.115175i \(-0.963257\pi\)
0.396929 0.917850i \(-0.370076\pi\)
\(228\) 0 0
\(229\) 3.95834 6.85604i 0.261574 0.453060i −0.705086 0.709122i \(-0.749092\pi\)
0.966660 + 0.256062i \(0.0824250\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.27796 5.67759i −0.214746 0.371951i 0.738448 0.674311i \(-0.235559\pi\)
−0.953194 + 0.302359i \(0.902226\pi\)
\(234\) 0 0
\(235\) −12.1706 + 21.0801i −0.793922 + 1.37511i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.01922 13.8897i −0.518720 0.898450i −0.999763 0.0217529i \(-0.993075\pi\)
0.481043 0.876697i \(-0.340258\pi\)
\(240\) 0 0
\(241\) −5.58957 9.68142i −0.360056 0.623635i 0.627914 0.778283i \(-0.283909\pi\)
−0.987970 + 0.154648i \(0.950576\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −29.2728 4.11599i −1.87017 0.262961i
\(246\) 0 0
\(247\) −1.22598 + 2.12347i −0.0780075 + 0.135113i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.6169 0.922613 0.461307 0.887241i \(-0.347381\pi\)
0.461307 + 0.887241i \(0.347381\pi\)
\(252\) 0 0
\(253\) 2.46908 0.155230
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.45936 12.9200i 0.465302 0.805927i −0.533913 0.845540i \(-0.679279\pi\)
0.999215 + 0.0396123i \(0.0126123\pi\)
\(258\) 0 0
\(259\) 1.12016 16.0115i 0.0696037 0.994907i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.1057 + 19.2357i 0.684808 + 1.18612i 0.973497 + 0.228699i \(0.0734472\pi\)
−0.288689 + 0.957423i \(0.593219\pi\)
\(264\) 0 0
\(265\) 4.06442 + 7.03978i 0.249675 + 0.432450i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.73590 8.20281i 0.288753 0.500134i −0.684760 0.728769i \(-0.740093\pi\)
0.973512 + 0.228635i \(0.0734261\pi\)
\(270\) 0 0
\(271\) −8.78188 15.2107i −0.533461 0.923982i −0.999236 0.0390786i \(-0.987558\pi\)
0.465775 0.884903i \(-0.345776\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.3788 + 21.4407i −0.746469 + 1.29292i
\(276\) 0 0
\(277\) −6.77651 11.7373i −0.407161 0.705224i 0.587409 0.809290i \(-0.300148\pi\)
−0.994570 + 0.104066i \(0.966815\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.14196 + 10.6382i −0.366398 + 0.634621i −0.989000 0.147919i \(-0.952743\pi\)
0.622601 + 0.782539i \(0.286076\pi\)
\(282\) 0 0
\(283\) −14.0483 −0.835084 −0.417542 0.908658i \(-0.637108\pi\)
−0.417542 + 0.908658i \(0.637108\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.484873 + 6.93072i −0.0286212 + 0.409108i
\(288\) 0 0
\(289\) −17.5760 30.4426i −1.03388 1.79074i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.05863 7.02975i −0.237108 0.410682i 0.722776 0.691083i \(-0.242866\pi\)
−0.959883 + 0.280401i \(0.909533\pi\)
\(294\) 0 0
\(295\) 9.61207 16.6486i 0.559636 0.969319i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.746244 0.0431564
\(300\) 0 0
\(301\) 2.10383 1.02602i 0.121263 0.0591390i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 22.3398 38.6937i 1.27917 2.21559i
\(306\) 0 0
\(307\) −6.61556 −0.377570 −0.188785 0.982018i \(-0.560455\pi\)
−0.188785 + 0.982018i \(0.560455\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.35961 −0.474030 −0.237015 0.971506i \(-0.576169\pi\)
−0.237015 + 0.971506i \(0.576169\pi\)
\(312\) 0 0
\(313\) 26.1083 1.47573 0.737864 0.674949i \(-0.235834\pi\)
0.737864 + 0.674949i \(0.235834\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.2148 −0.629887 −0.314943 0.949110i \(-0.601986\pi\)
−0.314943 + 0.949110i \(0.601986\pi\)
\(318\) 0 0
\(319\) −16.2166 −0.907957
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 30.3696 1.68981
\(324\) 0 0
\(325\) −3.74132 + 6.48015i −0.207531 + 0.359454i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.6427 8.52819i −0.697012 0.470174i
\(330\) 0 0
\(331\) 18.2329 1.00217 0.501086 0.865398i \(-0.332934\pi\)
0.501086 + 0.865398i \(0.332934\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.2699 + 17.7880i −0.561104 + 0.971860i
\(336\) 0 0
\(337\) 4.62148 + 8.00465i 0.251748 + 0.436041i 0.964007 0.265876i \(-0.0856612\pi\)
−0.712259 + 0.701917i \(0.752328\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.918392 1.59070i −0.0497337 0.0861413i
\(342\) 0 0
\(343\) 3.85237 18.1152i 0.208009 0.978127i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −31.6649 −1.69986 −0.849931 0.526894i \(-0.823356\pi\)
−0.849931 + 0.526894i \(0.823356\pi\)
\(348\) 0 0
\(349\) −18.2112 + 31.5427i −0.974821 + 1.68844i −0.294296 + 0.955714i \(0.595085\pi\)
−0.680525 + 0.732725i \(0.738248\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.59888 + 6.23345i 0.191549 + 0.331773i 0.945764 0.324855i \(-0.105316\pi\)
−0.754215 + 0.656628i \(0.771982\pi\)
\(354\) 0 0
\(355\) −24.3755 + 42.2196i −1.29372 + 2.24079i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.39891 12.8153i −0.390499 0.676365i 0.602016 0.798484i \(-0.294364\pi\)
−0.992515 + 0.122119i \(0.961031\pi\)
\(360\) 0 0
\(361\) 0.657495 1.13881i 0.0346050 0.0599376i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.88402 + 3.26323i 0.0986144 + 0.170805i
\(366\) 0 0
\(367\) 2.09550 + 3.62951i 0.109384 + 0.189459i 0.915521 0.402270i \(-0.131779\pi\)
−0.806137 + 0.591729i \(0.798445\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.57749 + 2.23240i −0.237651 + 0.115901i
\(372\) 0 0
\(373\) −8.70875 + 15.0840i −0.450922 + 0.781020i −0.998444 0.0557718i \(-0.982238\pi\)
0.547522 + 0.836792i \(0.315571\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.90125 −0.252427
\(378\) 0 0
\(379\) 11.1732 0.573927 0.286964 0.957941i \(-0.407354\pi\)
0.286964 + 0.957941i \(0.407354\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.5508 21.7386i 0.641316 1.11079i −0.343823 0.939035i \(-0.611722\pi\)
0.985139 0.171758i \(-0.0549448\pi\)
\(384\) 0 0
\(385\) −17.8689 12.0536i −0.910681 0.614306i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.732011 + 1.26788i 0.0371144 + 0.0642841i 0.883986 0.467513i \(-0.154850\pi\)
−0.846872 + 0.531798i \(0.821517\pi\)
\(390\) 0 0
\(391\) −4.62141 8.00452i −0.233715 0.404806i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −25.0641 + 43.4124i −1.26111 + 2.18431i
\(396\) 0 0
\(397\) −1.49591 2.59100i −0.0750778 0.130039i 0.826042 0.563608i \(-0.190587\pi\)
−0.901120 + 0.433570i \(0.857254\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.1685 + 22.8086i −0.657605 + 1.13901i 0.323629 + 0.946184i \(0.395097\pi\)
−0.981234 + 0.192821i \(0.938236\pi\)
\(402\) 0 0
\(403\) −0.277571 0.480767i −0.0138268 0.0239487i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.85166 10.1354i 0.290056 0.502392i
\(408\) 0 0
\(409\) 3.00784 0.148728 0.0743642 0.997231i \(-0.476307\pi\)
0.0743642 + 0.997231i \(0.476307\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.98489 + 6.73537i 0.491324 + 0.331426i
\(414\) 0 0
\(415\) −22.1389 38.3457i −1.08676 1.88232i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.2414 29.8630i −0.842297 1.45890i −0.887948 0.459944i \(-0.847869\pi\)
0.0456508 0.998957i \(-0.485464\pi\)
\(420\) 0 0
\(421\) 9.86151 17.0806i 0.480620 0.832459i −0.519132 0.854694i \(-0.673745\pi\)
0.999753 + 0.0222349i \(0.00707818\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 92.6783 4.49556
\(426\) 0 0
\(427\) 23.2063 + 15.6540i 1.12303 + 0.757548i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.4257 18.0578i 0.502188 0.869816i −0.497808 0.867287i \(-0.665862\pi\)
0.999997 0.00252883i \(-0.000804953\pi\)
\(432\) 0 0
\(433\) 15.6324 0.751247 0.375624 0.926772i \(-0.377429\pi\)
0.375624 + 0.926772i \(0.377429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.38235 0.257473
\(438\) 0 0
\(439\) −35.6989 −1.70382 −0.851909 0.523690i \(-0.824555\pi\)
−0.851909 + 0.523690i \(0.824555\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.1157 0.860705 0.430352 0.902661i \(-0.358389\pi\)
0.430352 + 0.902661i \(0.358389\pi\)
\(444\) 0 0
\(445\) 32.7623 1.55308
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.4189 −0.822051 −0.411025 0.911624i \(-0.634829\pi\)
−0.411025 + 0.911624i \(0.634829\pi\)
\(450\) 0 0
\(451\) −2.53294 + 4.38719i −0.119272 + 0.206585i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.40061 3.64302i −0.253185 0.170787i
\(456\) 0 0
\(457\) 15.3584 0.718434 0.359217 0.933254i \(-0.383044\pi\)
0.359217 + 0.933254i \(0.383044\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.15140 10.6545i 0.286499 0.496231i −0.686472 0.727156i \(-0.740842\pi\)
0.972972 + 0.230924i \(0.0741750\pi\)
\(462\) 0 0
\(463\) −9.18922 15.9162i −0.427059 0.739688i 0.569551 0.821956i \(-0.307117\pi\)
−0.996610 + 0.0822677i \(0.973784\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.1020 19.2292i −0.513738 0.889820i −0.999873 0.0159363i \(-0.994927\pi\)
0.486135 0.873884i \(-0.338406\pi\)
\(468\) 0 0
\(469\) −10.6682 7.19631i −0.492612 0.332295i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.70672 0.0784749
\(474\) 0 0
\(475\) −26.9845 + 46.7386i −1.23814 + 2.14451i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.2969 + 29.9591i 0.790317 + 1.36887i 0.925771 + 0.378085i \(0.123417\pi\)
−0.135454 + 0.990784i \(0.543249\pi\)
\(480\) 0 0
\(481\) 1.76858 3.06328i 0.0806405 0.139673i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.38895 14.5301i −0.380922 0.659777i
\(486\) 0 0
\(487\) −6.79789 + 11.7743i −0.308042 + 0.533544i −0.977934 0.208915i \(-0.933007\pi\)
0.669892 + 0.742458i \(0.266340\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.01841 12.1563i −0.316737 0.548604i 0.663069 0.748559i \(-0.269254\pi\)
−0.979805 + 0.199955i \(0.935920\pi\)
\(492\) 0 0
\(493\) 30.3529 + 52.5728i 1.36703 + 2.36776i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −25.3210 17.0804i −1.13580 0.766161i
\(498\) 0 0
\(499\) −15.1408 + 26.2246i −0.677794 + 1.17397i 0.297849 + 0.954613i \(0.403731\pi\)
−0.975644 + 0.219362i \(0.929603\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −35.5942 −1.58707 −0.793533 0.608527i \(-0.791761\pi\)
−0.793533 + 0.608527i \(0.791761\pi\)
\(504\) 0 0
\(505\) −70.8219 −3.15153
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.23675 + 5.60621i −0.143466 + 0.248491i −0.928800 0.370582i \(-0.879158\pi\)
0.785333 + 0.619073i \(0.212492\pi\)
\(510\) 0 0
\(511\) −2.12185 + 1.03481i −0.0938653 + 0.0457773i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.5172 + 42.4651i 1.08036 + 1.87123i
\(516\) 0 0
\(517\) −5.55982 9.62989i −0.244521 0.423522i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.18988 + 10.7212i −0.271184 + 0.469704i −0.969165 0.246412i \(-0.920748\pi\)
0.697982 + 0.716116i \(0.254082\pi\)
\(522\) 0 0
\(523\) −11.0290 19.1028i −0.482265 0.835308i 0.517527 0.855667i \(-0.326853\pi\)
−0.999793 + 0.0203585i \(0.993519\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.43794 + 5.95469i −0.149759 + 0.259390i
\(528\) 0 0
\(529\) 10.6810 + 18.5000i 0.464389 + 0.804346i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.765547 + 1.32597i −0.0331595 + 0.0574340i
\(534\) 0 0
\(535\) 86.5319 3.74110
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.31462 10.6408i 0.358136 0.458331i
\(540\) 0 0
\(541\) 7.24989 + 12.5572i 0.311697 + 0.539875i 0.978730 0.205153i \(-0.0657693\pi\)
−0.667033 + 0.745028i \(0.732436\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.4293 + 18.0640i 0.446740 + 0.773777i
\(546\) 0 0
\(547\) 12.4034 21.4834i 0.530332 0.918562i −0.469042 0.883176i \(-0.655401\pi\)
0.999374 0.0353858i \(-0.0112660\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −35.3506 −1.50599
\(552\) 0 0
\(553\) −26.0363 17.5630i −1.10718 0.746853i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.02336 + 15.6289i −0.382332 + 0.662219i −0.991395 0.130903i \(-0.958212\pi\)
0.609063 + 0.793122i \(0.291546\pi\)
\(558\) 0 0
\(559\) 0.515831 0.0218173
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.0350 0.802228 0.401114 0.916028i \(-0.368623\pi\)
0.401114 + 0.916028i \(0.368623\pi\)
\(564\) 0 0
\(565\) −62.6798 −2.63696
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.36036 −0.392407 −0.196203 0.980563i \(-0.562861\pi\)
−0.196203 + 0.980563i \(0.562861\pi\)
\(570\) 0 0
\(571\) −35.3611 −1.47981 −0.739907 0.672709i \(-0.765131\pi\)
−0.739907 + 0.672709i \(0.765131\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.4252 0.684979
\(576\) 0 0
\(577\) 14.0160 24.2764i 0.583493 1.01064i −0.411568 0.911379i \(-0.635019\pi\)
0.995061 0.0992610i \(-0.0316479\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.9336 12.1599i 1.03442 0.504478i
\(582\) 0 0
\(583\) −3.71344 −0.153795
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.7305 23.7819i 0.566718 0.981585i −0.430169 0.902748i \(-0.641546\pi\)
0.996888 0.0788364i \(-0.0251205\pi\)
\(588\) 0 0
\(589\) −2.00200 3.46757i −0.0824912 0.142879i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.1267 + 19.2719i 0.456917 + 0.791404i 0.998796 0.0490525i \(-0.0156202\pi\)
−0.541879 + 0.840457i \(0.682287\pi\)
\(594\) 0 0
\(595\) −5.63108 + 80.4900i −0.230852 + 3.29977i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.74118 0.275437 0.137719 0.990471i \(-0.456023\pi\)
0.137719 + 0.990471i \(0.456023\pi\)
\(600\) 0 0
\(601\) 4.04153 7.00013i 0.164857 0.285541i −0.771747 0.635929i \(-0.780617\pi\)
0.936605 + 0.350388i \(0.113950\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.3682 + 26.6185i 0.624805 + 1.08219i
\(606\) 0 0
\(607\) 15.8020 27.3698i 0.641382 1.11091i −0.343742 0.939064i \(-0.611695\pi\)
0.985124 0.171843i \(-0.0549720\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.68038 2.91050i −0.0679808 0.117746i
\(612\) 0 0
\(613\) −3.10601 + 5.37977i −0.125451 + 0.217287i −0.921909 0.387407i \(-0.873371\pi\)
0.796458 + 0.604693i \(0.206704\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.309009 + 0.535218i 0.0124402 + 0.0215471i 0.872178 0.489188i \(-0.162707\pi\)
−0.859738 + 0.510735i \(0.829373\pi\)
\(618\) 0 0
\(619\) 20.0103 + 34.6589i 0.804283 + 1.39306i 0.916774 + 0.399406i \(0.130783\pi\)
−0.112492 + 0.993653i \(0.535883\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.43250 + 20.4760i −0.0573920 + 0.820355i
\(624\) 0 0
\(625\) −37.7647 + 65.4105i −1.51059 + 2.61642i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −43.8106 −1.74684
\(630\) 0 0
\(631\) −5.20154 −0.207070 −0.103535 0.994626i \(-0.533015\pi\)
−0.103535 + 0.994626i \(0.533015\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.0246 + 31.2196i −0.715285 + 1.23891i
\(636\) 0 0
\(637\) 2.51298 3.21603i 0.0995678 0.127424i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.137294 0.237799i −0.00542277 0.00939251i 0.863301 0.504689i \(-0.168393\pi\)
−0.868724 + 0.495296i \(0.835059\pi\)
\(642\) 0 0
\(643\) −11.2657 19.5128i −0.444277 0.769510i 0.553725 0.832700i \(-0.313206\pi\)
−0.998002 + 0.0631900i \(0.979873\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.2737 21.2586i 0.482528 0.835763i −0.517271 0.855822i \(-0.673052\pi\)
0.999799 + 0.0200588i \(0.00638534\pi\)
\(648\) 0 0
\(649\) 4.39102 + 7.60547i 0.172363 + 0.298541i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.5154 28.6055i 0.646298 1.11942i −0.337703 0.941253i \(-0.609650\pi\)
0.984000 0.178167i \(-0.0570169\pi\)
\(654\) 0 0
\(655\) 4.95532 + 8.58286i 0.193620 + 0.335360i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.3813 37.0335i 0.832897 1.44262i −0.0628336 0.998024i \(-0.520014\pi\)
0.895731 0.444596i \(-0.146653\pi\)
\(660\) 0 0
\(661\) −19.1083 −0.743227 −0.371614 0.928387i \(-0.621195\pi\)
−0.371614 + 0.928387i \(0.621195\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −38.9523 26.2756i −1.51051 1.01892i
\(666\) 0 0
\(667\) 5.37940 + 9.31739i 0.208291 + 0.360771i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.2054 + 17.6762i 0.393973 + 0.682382i
\(672\) 0 0
\(673\) −12.9345 + 22.4032i −0.498588 + 0.863579i −0.999999 0.00162995i \(-0.999481\pi\)
0.501411 + 0.865209i \(0.332815\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.89337 −0.0727682 −0.0363841 0.999338i \(-0.511584\pi\)
−0.0363841 + 0.999338i \(0.511584\pi\)
\(678\) 0 0
\(679\) 9.44792 4.60767i 0.362578 0.176826i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.39573 + 11.0777i −0.244726 + 0.423878i −0.962055 0.272857i \(-0.912031\pi\)
0.717329 + 0.696735i \(0.245365\pi\)
\(684\) 0 0
\(685\) −5.42072 −0.207115
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.12234 −0.0427576
\(690\) 0 0
\(691\) 36.0698 1.37216 0.686079 0.727527i \(-0.259330\pi\)
0.686079 + 0.727527i \(0.259330\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.15669 0.195604
\(696\) 0 0
\(697\) 18.9638 0.718306
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.2524 0.764922 0.382461 0.923972i \(-0.375077\pi\)
0.382461 + 0.923972i \(0.375077\pi\)
\(702\) 0 0
\(703\) 12.7560 22.0941i 0.481103 0.833296i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.09663 44.2628i 0.116461 1.66468i
\(708\) 0 0
\(709\) −6.76636 −0.254116 −0.127058 0.991895i \(-0.540553\pi\)
−0.127058 + 0.991895i \(0.540553\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.609300 + 1.05534i −0.0228185 + 0.0395227i
\(714\) 0 0
\(715\) −2.37501 4.11364i −0.0888203 0.153841i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.43767 + 11.1504i 0.240084 + 0.415839i 0.960738 0.277457i \(-0.0894915\pi\)
−0.720654 + 0.693295i \(0.756158\pi\)
\(720\) 0 0
\(721\) −27.6121 + 13.4662i −1.02833 + 0.501508i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −107.879 −4.00653
\(726\) 0 0
\(727\) −14.3621 + 24.8758i −0.532659 + 0.922593i 0.466613 + 0.884461i \(0.345474\pi\)
−0.999273 + 0.0381316i \(0.987859\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.19449 5.53301i −0.118152 0.204646i
\(732\) 0 0
\(733\) −2.33025 + 4.03611i −0.0860697 + 0.149077i −0.905847 0.423606i \(-0.860764\pi\)
0.819777 + 0.572683i \(0.194097\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.69153 8.12596i −0.172815 0.299324i
\(738\) 0 0
\(739\) −9.46395 + 16.3920i −0.348137 + 0.602991i −0.985919 0.167227i \(-0.946519\pi\)
0.637782 + 0.770217i \(0.279852\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.64732 + 11.5135i 0.243867 + 0.422389i 0.961812 0.273710i \(-0.0882507\pi\)
−0.717946 + 0.696099i \(0.754917\pi\)
\(744\) 0 0
\(745\) 13.2909 + 23.0205i 0.486941 + 0.843406i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.78353 + 54.0814i −0.138247 + 1.97609i
\(750\) 0 0
\(751\) −7.61766 + 13.1942i −0.277972 + 0.481462i −0.970881 0.239563i \(-0.922996\pi\)
0.692908 + 0.721026i \(0.256329\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.94308 −0.361866
\(756\) 0 0
\(757\) 15.6279 0.568004 0.284002 0.958824i \(-0.408338\pi\)
0.284002 + 0.958824i \(0.408338\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.54797 6.14527i 0.128614 0.222766i −0.794526 0.607230i \(-0.792281\pi\)
0.923140 + 0.384464i \(0.125614\pi\)
\(762\) 0 0
\(763\) −11.7458 + 5.72832i −0.425226 + 0.207379i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.32712 + 2.29865i 0.0479197 + 0.0829994i
\(768\) 0 0
\(769\) 5.71618 + 9.90071i 0.206131 + 0.357029i 0.950492 0.310748i \(-0.100579\pi\)
−0.744362 + 0.667777i \(0.767246\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.40125 + 12.8193i −0.266204 + 0.461080i −0.967878 0.251418i \(-0.919103\pi\)
0.701674 + 0.712498i \(0.252436\pi\)
\(774\) 0 0
\(775\) −6.10949 10.5819i −0.219459 0.380114i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.52157 + 9.56364i −0.197831 + 0.342653i
\(780\) 0 0
\(781\) −11.1353 19.2869i −0.398453 0.690141i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.09951 10.5647i 0.217701 0.377069i
\(786\) 0 0
\(787\) 19.7177 0.702861 0.351431 0.936214i \(-0.385695\pi\)
0.351431 + 0.936214i \(0.385695\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.74062 39.1741i 0.0974452 1.39287i
\(792\) 0 0
\(793\) 3.08442 + 5.34238i 0.109531 + 0.189713i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.2215 38.4887i −0.787125 1.36334i −0.927722 0.373273i \(-0.878236\pi\)
0.140597 0.990067i \(-0.455098\pi\)