Properties

Label 3024.2.q.l.2305.6
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.6
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.l.2881.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0309846 - 0.0536670i) q^{5} +(0.981674 + 2.45689i) q^{7} +O(q^{10})\) \(q+(-0.0309846 - 0.0536670i) q^{5} +(0.981674 + 2.45689i) q^{7} +(1.59027 - 2.75442i) q^{11} +(-0.252417 + 0.437198i) q^{13} +(0.554700 + 0.960769i) q^{17} +(-0.933573 + 1.61700i) q^{19} +(3.10248 + 5.37365i) q^{23} +(2.49808 - 4.32680i) q^{25} +(-2.39645 - 4.15077i) q^{29} +2.53716 q^{31} +(0.101437 - 0.128809i) q^{35} +(-4.26085 + 7.38001i) q^{37} +(4.94516 - 8.56527i) q^{41} +(3.95574 + 6.85154i) q^{43} +6.58336 q^{47} +(-5.07263 + 4.82373i) q^{49} +(1.58258 + 2.74112i) q^{53} -0.197095 q^{55} +9.01304 q^{59} -13.8819 q^{61} +0.0312842 q^{65} -3.33283 q^{67} +2.25651 q^{71} +(2.07503 + 3.59406i) q^{73} +(8.32844 + 1.20317i) q^{77} +2.97850 q^{79} +(2.17289 + 3.76355i) q^{83} +(0.0343744 - 0.0595381i) q^{85} +(4.30077 - 7.44915i) q^{89} +(-1.32194 - 0.190974i) q^{91} +0.115706 q^{95} +(-3.27671 - 5.67542i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - q^{5} - 5q^{7} + O(q^{10}) \) \( 22q - q^{5} - 5q^{7} + 3q^{11} + 7q^{13} + q^{17} - 13q^{19} - 22q^{25} + 7q^{29} + 12q^{31} + 2q^{35} + 6q^{37} - 4q^{41} - 2q^{43} - 34q^{47} - 25q^{49} - q^{53} - 2q^{55} + 42q^{59} - 62q^{61} - 6q^{65} - 52q^{67} - 32q^{71} + 17q^{73} + q^{77} - 32q^{79} - 36q^{83} + 28q^{85} + 2q^{89} - 15q^{91} + 48q^{95} + 19q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.0309846 0.0536670i −0.0138567 0.0240006i 0.859014 0.511952i \(-0.171078\pi\)
−0.872871 + 0.487952i \(0.837744\pi\)
\(6\) 0 0
\(7\) 0.981674 + 2.45689i 0.371038 + 0.928618i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.59027 2.75442i 0.479483 0.830490i −0.520240 0.854020i \(-0.674157\pi\)
0.999723 + 0.0235306i \(0.00749072\pi\)
\(12\) 0 0
\(13\) −0.252417 + 0.437198i −0.0700078 + 0.121257i −0.898904 0.438145i \(-0.855636\pi\)
0.828897 + 0.559402i \(0.188969\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.554700 + 0.960769i 0.134535 + 0.233021i 0.925420 0.378944i \(-0.123713\pi\)
−0.790885 + 0.611965i \(0.790379\pi\)
\(18\) 0 0
\(19\) −0.933573 + 1.61700i −0.214176 + 0.370964i −0.953017 0.302915i \(-0.902040\pi\)
0.738841 + 0.673880i \(0.235373\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.10248 + 5.37365i 0.646912 + 1.12048i 0.983856 + 0.178960i \(0.0572732\pi\)
−0.336945 + 0.941525i \(0.609393\pi\)
\(24\) 0 0
\(25\) 2.49808 4.32680i 0.499616 0.865360i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.39645 4.15077i −0.445010 0.770779i 0.553043 0.833153i \(-0.313466\pi\)
−0.998053 + 0.0623731i \(0.980133\pi\)
\(30\) 0 0
\(31\) 2.53716 0.455687 0.227843 0.973698i \(-0.426833\pi\)
0.227843 + 0.973698i \(0.426833\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.101437 0.128809i 0.0171460 0.0217728i
\(36\) 0 0
\(37\) −4.26085 + 7.38001i −0.700479 + 1.21327i 0.267819 + 0.963469i \(0.413697\pi\)
−0.968298 + 0.249797i \(0.919636\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.94516 8.56527i 0.772305 1.33767i −0.163992 0.986462i \(-0.552437\pi\)
0.936297 0.351210i \(-0.114230\pi\)
\(42\) 0 0
\(43\) 3.95574 + 6.85154i 0.603244 + 1.04485i 0.992326 + 0.123646i \(0.0394589\pi\)
−0.389082 + 0.921203i \(0.627208\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.58336 0.960282 0.480141 0.877191i \(-0.340586\pi\)
0.480141 + 0.877191i \(0.340586\pi\)
\(48\) 0 0
\(49\) −5.07263 + 4.82373i −0.724662 + 0.689105i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.58258 + 2.74112i 0.217385 + 0.376521i 0.954008 0.299782i \(-0.0969140\pi\)
−0.736623 + 0.676304i \(0.763581\pi\)
\(54\) 0 0
\(55\) −0.197095 −0.0265763
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.01304 1.17340 0.586699 0.809805i \(-0.300427\pi\)
0.586699 + 0.809805i \(0.300427\pi\)
\(60\) 0 0
\(61\) −13.8819 −1.77739 −0.888697 0.458496i \(-0.848388\pi\)
−0.888697 + 0.458496i \(0.848388\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0312842 0.00388032
\(66\) 0 0
\(67\) −3.33283 −0.407170 −0.203585 0.979057i \(-0.565259\pi\)
−0.203585 + 0.979057i \(0.565259\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.25651 0.267798 0.133899 0.990995i \(-0.457250\pi\)
0.133899 + 0.990995i \(0.457250\pi\)
\(72\) 0 0
\(73\) 2.07503 + 3.59406i 0.242864 + 0.420652i 0.961529 0.274704i \(-0.0885799\pi\)
−0.718665 + 0.695356i \(0.755247\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.32844 + 1.20317i 0.949114 + 0.137114i
\(78\) 0 0
\(79\) 2.97850 0.335107 0.167554 0.985863i \(-0.446413\pi\)
0.167554 + 0.985863i \(0.446413\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.17289 + 3.76355i 0.238506 + 0.413104i 0.960286 0.279019i \(-0.0900092\pi\)
−0.721780 + 0.692122i \(0.756676\pi\)
\(84\) 0 0
\(85\) 0.0343744 0.0595381i 0.00372842 0.00645782i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.30077 7.44915i 0.455880 0.789608i −0.542858 0.839824i \(-0.682658\pi\)
0.998738 + 0.0502166i \(0.0159912\pi\)
\(90\) 0 0
\(91\) −1.32194 0.190974i −0.138577 0.0200195i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.115706 0.0118712
\(96\) 0 0
\(97\) −3.27671 5.67542i −0.332699 0.576252i 0.650341 0.759642i \(-0.274626\pi\)
−0.983040 + 0.183391i \(0.941293\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.25827 5.64349i 0.324210 0.561548i −0.657142 0.753767i \(-0.728235\pi\)
0.981352 + 0.192219i \(0.0615683\pi\)
\(102\) 0 0
\(103\) 8.50978 + 14.7394i 0.838494 + 1.45231i 0.891154 + 0.453701i \(0.149897\pi\)
−0.0526599 + 0.998613i \(0.516770\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.86075 + 15.3473i −0.856601 + 1.48368i 0.0185508 + 0.999828i \(0.494095\pi\)
−0.875152 + 0.483848i \(0.839239\pi\)
\(108\) 0 0
\(109\) 6.62928 + 11.4822i 0.634970 + 1.09980i 0.986522 + 0.163631i \(0.0523208\pi\)
−0.351552 + 0.936168i \(0.614346\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.10094 + 1.90689i −0.103568 + 0.179385i −0.913152 0.407619i \(-0.866359\pi\)
0.809584 + 0.587004i \(0.199693\pi\)
\(114\) 0 0
\(115\) 0.192258 0.333001i 0.0179282 0.0310525i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.81597 + 2.30600i −0.166470 + 0.211391i
\(120\) 0 0
\(121\) 0.442104 + 0.765746i 0.0401912 + 0.0696133i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.619455 −0.0554057
\(126\) 0 0
\(127\) 4.61290 0.409329 0.204664 0.978832i \(-0.434390\pi\)
0.204664 + 0.978832i \(0.434390\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.0760695 + 0.131756i 0.00664623 + 0.0115116i 0.869329 0.494233i \(-0.164551\pi\)
−0.862683 + 0.505745i \(0.831218\pi\)
\(132\) 0 0
\(133\) −4.88925 0.706325i −0.423952 0.0612461i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.77770 + 3.07907i −0.151879 + 0.263063i −0.931918 0.362668i \(-0.881866\pi\)
0.780039 + 0.625731i \(0.215199\pi\)
\(138\) 0 0
\(139\) 7.60945 13.1800i 0.645425 1.11791i −0.338778 0.940866i \(-0.610013\pi\)
0.984203 0.177043i \(-0.0566532\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.802820 + 1.39052i 0.0671352 + 0.116281i
\(144\) 0 0
\(145\) −0.148506 + 0.257220i −0.0123328 + 0.0213610i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.183457 + 0.317757i 0.0150294 + 0.0260317i 0.873442 0.486928i \(-0.161882\pi\)
−0.858413 + 0.512959i \(0.828549\pi\)
\(150\) 0 0
\(151\) −6.29162 + 10.8974i −0.512005 + 0.886818i 0.487899 + 0.872900i \(0.337764\pi\)
−0.999903 + 0.0139176i \(0.995570\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.0786128 0.136161i −0.00631434 0.0109368i
\(156\) 0 0
\(157\) −5.45468 −0.435331 −0.217666 0.976023i \(-0.569844\pi\)
−0.217666 + 0.976023i \(0.569844\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.1569 + 12.8976i −0.800473 + 1.01648i
\(162\) 0 0
\(163\) −3.83559 + 6.64343i −0.300426 + 0.520354i −0.976233 0.216726i \(-0.930462\pi\)
0.675806 + 0.737079i \(0.263796\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.47493 + 16.4111i −0.733192 + 1.26993i 0.222320 + 0.974974i \(0.428637\pi\)
−0.955512 + 0.294952i \(0.904696\pi\)
\(168\) 0 0
\(169\) 6.37257 + 11.0376i 0.490198 + 0.849048i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 23.9919 1.82407 0.912034 0.410115i \(-0.134512\pi\)
0.912034 + 0.410115i \(0.134512\pi\)
\(174\) 0 0
\(175\) 13.0828 + 1.89000i 0.988965 + 0.142871i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.27901 7.41146i −0.319828 0.553959i 0.660624 0.750717i \(-0.270292\pi\)
−0.980452 + 0.196758i \(0.936959\pi\)
\(180\) 0 0
\(181\) 0.632669 0.0470259 0.0235130 0.999724i \(-0.492515\pi\)
0.0235130 + 0.999724i \(0.492515\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.528083 0.0388255
\(186\) 0 0
\(187\) 3.52849 0.258028
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.5831 1.70641 0.853205 0.521575i \(-0.174655\pi\)
0.853205 + 0.521575i \(0.174655\pi\)
\(192\) 0 0
\(193\) 25.6059 1.84315 0.921577 0.388196i \(-0.126902\pi\)
0.921577 + 0.388196i \(0.126902\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.45810 −0.673862 −0.336931 0.941529i \(-0.609389\pi\)
−0.336931 + 0.941529i \(0.609389\pi\)
\(198\) 0 0
\(199\) −4.15133 7.19032i −0.294280 0.509708i 0.680537 0.732714i \(-0.261747\pi\)
−0.974817 + 0.223005i \(0.928413\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.84547 9.96253i 0.550644 0.699232i
\(204\) 0 0
\(205\) −0.612896 −0.0428065
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.96926 + 5.14291i 0.205388 + 0.355742i
\(210\) 0 0
\(211\) 10.1164 17.5222i 0.696444 1.20628i −0.273247 0.961944i \(-0.588098\pi\)
0.969691 0.244333i \(-0.0785689\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.245134 0.424585i 0.0167180 0.0289564i
\(216\) 0 0
\(217\) 2.49066 + 6.23352i 0.169077 + 0.423159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.560062 −0.0376739
\(222\) 0 0
\(223\) 2.41918 + 4.19014i 0.162000 + 0.280593i 0.935586 0.353099i \(-0.114872\pi\)
−0.773586 + 0.633692i \(0.781539\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.336106 + 0.582153i −0.0223082 + 0.0386389i −0.876964 0.480556i \(-0.840435\pi\)
0.854656 + 0.519195i \(0.173768\pi\)
\(228\) 0 0
\(229\) 3.06776 + 5.31352i 0.202724 + 0.351128i 0.949405 0.314054i \(-0.101687\pi\)
−0.746681 + 0.665182i \(0.768354\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1492 + 21.0431i −0.795922 + 1.37858i 0.126330 + 0.991988i \(0.459680\pi\)
−0.922252 + 0.386589i \(0.873653\pi\)
\(234\) 0 0
\(235\) −0.203983 0.353309i −0.0133064 0.0230473i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.5978 23.5521i 0.879569 1.52346i 0.0277545 0.999615i \(-0.491164\pi\)
0.851815 0.523843i \(-0.175502\pi\)
\(240\) 0 0
\(241\) 12.9027 22.3481i 0.831135 1.43957i −0.0660031 0.997819i \(-0.521025\pi\)
0.897139 0.441749i \(-0.145642\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.416049 + 0.122771i 0.0265804 + 0.00784356i
\(246\) 0 0
\(247\) −0.471299 0.816313i −0.0299880 0.0519408i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −27.0741 −1.70890 −0.854450 0.519533i \(-0.826106\pi\)
−0.854450 + 0.519533i \(0.826106\pi\)
\(252\) 0 0
\(253\) 19.7351 1.24073
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.76073 11.7099i −0.421723 0.730445i 0.574385 0.818585i \(-0.305241\pi\)
−0.996108 + 0.0881399i \(0.971908\pi\)
\(258\) 0 0
\(259\) −22.3146 3.22368i −1.38656 0.200310i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.68727 11.5827i 0.412355 0.714220i −0.582792 0.812621i \(-0.698040\pi\)
0.995147 + 0.0984018i \(0.0313730\pi\)
\(264\) 0 0
\(265\) 0.0980716 0.169865i 0.00602449 0.0104347i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.91594 6.78261i −0.238759 0.413543i 0.721599 0.692311i \(-0.243407\pi\)
−0.960359 + 0.278768i \(0.910074\pi\)
\(270\) 0 0
\(271\) −15.1737 + 26.2816i −0.921735 + 1.59649i −0.125005 + 0.992156i \(0.539895\pi\)
−0.796730 + 0.604335i \(0.793439\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.94523 13.7615i −0.479115 0.829852i
\(276\) 0 0
\(277\) 11.3462 19.6522i 0.681728 1.18079i −0.292725 0.956197i \(-0.594562\pi\)
0.974453 0.224591i \(-0.0721046\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0826 + 17.4635i 0.601475 + 1.04179i 0.992598 + 0.121447i \(0.0387536\pi\)
−0.391122 + 0.920339i \(0.627913\pi\)
\(282\) 0 0
\(283\) 16.9059 1.00495 0.502477 0.864591i \(-0.332422\pi\)
0.502477 + 0.864591i \(0.332422\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 25.8985 + 3.74142i 1.52874 + 0.220849i
\(288\) 0 0
\(289\) 7.88462 13.6566i 0.463801 0.803327i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.40597 + 4.16727i −0.140558 + 0.243454i −0.927707 0.373309i \(-0.878223\pi\)
0.787149 + 0.616763i \(0.211556\pi\)
\(294\) 0 0
\(295\) −0.279266 0.483703i −0.0162595 0.0281623i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.13247 −0.181155
\(300\) 0 0
\(301\) −12.9502 + 16.4448i −0.746439 + 0.947862i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.430125 + 0.744999i 0.0246289 + 0.0426585i
\(306\) 0 0
\(307\) −15.9188 −0.908534 −0.454267 0.890866i \(-0.650099\pi\)
−0.454267 + 0.890866i \(0.650099\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.262869 −0.0149059 −0.00745297 0.999972i \(-0.502372\pi\)
−0.00745297 + 0.999972i \(0.502372\pi\)
\(312\) 0 0
\(313\) −6.25068 −0.353309 −0.176655 0.984273i \(-0.556528\pi\)
−0.176655 + 0.984273i \(0.556528\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.6792 1.10530 0.552648 0.833415i \(-0.313618\pi\)
0.552648 + 0.833415i \(0.313618\pi\)
\(318\) 0 0
\(319\) −15.2440 −0.853499
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.07141 −0.115256
\(324\) 0 0
\(325\) 1.26111 + 2.18431i 0.0699540 + 0.121164i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.46271 + 16.1746i 0.356301 + 0.891734i
\(330\) 0 0
\(331\) −24.5338 −1.34850 −0.674249 0.738504i \(-0.735533\pi\)
−0.674249 + 0.738504i \(0.735533\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.103267 + 0.178863i 0.00564206 + 0.00977233i
\(336\) 0 0
\(337\) −6.89471 + 11.9420i −0.375579 + 0.650521i −0.990413 0.138135i \(-0.955889\pi\)
0.614835 + 0.788656i \(0.289223\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.03475 6.98840i 0.218494 0.378443i
\(342\) 0 0
\(343\) −16.8311 7.72757i −0.908792 0.417250i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.6957 −1.05732 −0.528661 0.848833i \(-0.677306\pi\)
−0.528661 + 0.848833i \(0.677306\pi\)
\(348\) 0 0
\(349\) 5.34712 + 9.26149i 0.286225 + 0.495756i 0.972905 0.231203i \(-0.0742662\pi\)
−0.686681 + 0.726959i \(0.740933\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.83073 + 10.0991i −0.310338 + 0.537522i −0.978436 0.206552i \(-0.933776\pi\)
0.668097 + 0.744074i \(0.267109\pi\)
\(354\) 0 0
\(355\) −0.0699170 0.121100i −0.00371081 0.00642731i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.82159 + 15.2794i −0.465586 + 0.806418i −0.999228 0.0392925i \(-0.987490\pi\)
0.533642 + 0.845710i \(0.320823\pi\)
\(360\) 0 0
\(361\) 7.75688 + 13.4353i 0.408257 + 0.707122i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.128588 0.222721i 0.00673061 0.0116578i
\(366\) 0 0
\(367\) 1.69146 2.92969i 0.0882934 0.152929i −0.818496 0.574512i \(-0.805192\pi\)
0.906790 + 0.421583i \(0.138525\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.18104 + 6.57912i −0.268986 + 0.341571i
\(372\) 0 0
\(373\) −6.69511 11.5963i −0.346660 0.600433i 0.638994 0.769212i \(-0.279351\pi\)
−0.985654 + 0.168779i \(0.946018\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.41962 0.124617
\(378\) 0 0
\(379\) 27.6131 1.41839 0.709194 0.705013i \(-0.249059\pi\)
0.709194 + 0.705013i \(0.249059\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.5020 21.6541i −0.638822 1.10647i −0.985692 0.168559i \(-0.946089\pi\)
0.346869 0.937913i \(-0.387245\pi\)
\(384\) 0 0
\(385\) −0.193483 0.484242i −0.00986083 0.0246792i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.0683229 + 0.118339i −0.00346411 + 0.00600001i −0.867752 0.496997i \(-0.834436\pi\)
0.864288 + 0.502997i \(0.167769\pi\)
\(390\) 0 0
\(391\) −3.44189 + 5.96153i −0.174064 + 0.301488i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.0922877 0.159847i −0.00464350 0.00804277i
\(396\) 0 0
\(397\) 7.91030 13.7010i 0.397006 0.687635i −0.596349 0.802726i \(-0.703382\pi\)
0.993355 + 0.115090i \(0.0367157\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.52745 9.57383i −0.276028 0.478094i 0.694366 0.719622i \(-0.255685\pi\)
−0.970394 + 0.241528i \(0.922352\pi\)
\(402\) 0 0
\(403\) −0.640420 + 1.10924i −0.0319016 + 0.0552552i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.5518 + 23.4724i 0.671737 + 1.16348i
\(408\) 0 0
\(409\) −36.0128 −1.78072 −0.890358 0.455260i \(-0.849546\pi\)
−0.890358 + 0.455260i \(0.849546\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.84787 + 22.1441i 0.435375 + 1.08964i
\(414\) 0 0
\(415\) 0.134652 0.233225i 0.00660982 0.0114485i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.4877 28.5576i 0.805477 1.39513i −0.110491 0.993877i \(-0.535242\pi\)
0.915968 0.401251i \(-0.131424\pi\)
\(420\) 0 0
\(421\) 14.9800 + 25.9461i 0.730080 + 1.26454i 0.956849 + 0.290587i \(0.0938505\pi\)
−0.226769 + 0.973949i \(0.572816\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.54274 0.268862
\(426\) 0 0
\(427\) −13.6275 34.1063i −0.659480 1.65052i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.4021 21.4811i −0.597389 1.03471i −0.993205 0.116379i \(-0.962871\pi\)
0.395816 0.918330i \(-0.370462\pi\)
\(432\) 0 0
\(433\) −5.00906 −0.240720 −0.120360 0.992730i \(-0.538405\pi\)
−0.120360 + 0.992730i \(0.538405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.5856 −0.554213
\(438\) 0 0
\(439\) 40.5836 1.93695 0.968475 0.249110i \(-0.0801381\pi\)
0.968475 + 0.249110i \(0.0801381\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −28.2665 −1.34298 −0.671490 0.741014i \(-0.734345\pi\)
−0.671490 + 0.741014i \(0.734345\pi\)
\(444\) 0 0
\(445\) −0.533031 −0.0252681
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.6443 −1.72935 −0.864676 0.502329i \(-0.832477\pi\)
−0.864676 + 0.502329i \(0.832477\pi\)
\(450\) 0 0
\(451\) −15.7283 27.2421i −0.740615 1.28278i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.0307108 + 0.0768618i 0.00143975 + 0.00360334i
\(456\) 0 0
\(457\) −6.38308 −0.298588 −0.149294 0.988793i \(-0.547700\pi\)
−0.149294 + 0.988793i \(0.547700\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.24366 12.5464i −0.337371 0.584343i 0.646567 0.762858i \(-0.276204\pi\)
−0.983937 + 0.178514i \(0.942871\pi\)
\(462\) 0 0
\(463\) −13.2527 + 22.9544i −0.615907 + 1.06678i 0.374317 + 0.927301i \(0.377877\pi\)
−0.990225 + 0.139482i \(0.955456\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.6879 + 20.2440i −0.540851 + 0.936782i 0.458004 + 0.888950i \(0.348564\pi\)
−0.998855 + 0.0478318i \(0.984769\pi\)
\(468\) 0 0
\(469\) −3.27176 8.18841i −0.151076 0.378106i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.1627 1.15698
\(474\) 0 0
\(475\) 4.66428 + 8.07877i 0.214012 + 0.370679i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.64803 + 8.05063i −0.212374 + 0.367842i −0.952457 0.304673i \(-0.901453\pi\)
0.740083 + 0.672515i \(0.234786\pi\)
\(480\) 0 0
\(481\) −2.15102 3.72567i −0.0980780 0.169876i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.203055 + 0.351702i −0.00922026 + 0.0159700i
\(486\) 0 0
\(487\) −2.04947 3.54979i −0.0928704 0.160856i 0.815847 0.578267i \(-0.196271\pi\)
−0.908718 + 0.417411i \(0.862938\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.98703 8.63778i 0.225061 0.389818i −0.731277 0.682081i \(-0.761075\pi\)
0.956338 + 0.292264i \(0.0944084\pi\)
\(492\) 0 0
\(493\) 2.65862 4.60487i 0.119738 0.207393i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.21515 + 5.54399i 0.0993632 + 0.248682i
\(498\) 0 0
\(499\) −5.60415 9.70667i −0.250876 0.434530i 0.712891 0.701275i \(-0.247385\pi\)
−0.963767 + 0.266744i \(0.914052\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.69350 −0.0755094 −0.0377547 0.999287i \(-0.512021\pi\)
−0.0377547 + 0.999287i \(0.512021\pi\)
\(504\) 0 0
\(505\) −0.403825 −0.0179700
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.4777 35.4685i −0.907659 1.57211i −0.817307 0.576202i \(-0.804534\pi\)
−0.0903524 0.995910i \(-0.528799\pi\)
\(510\) 0 0
\(511\) −6.79320 + 8.62631i −0.300514 + 0.381606i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.527345 0.913388i 0.0232376 0.0402487i
\(516\) 0 0
\(517\) 10.4693 18.1334i 0.460439 0.797504i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.5075 26.8598i −0.679396 1.17675i −0.975163 0.221488i \(-0.928909\pi\)
0.295767 0.955260i \(-0.404425\pi\)
\(522\) 0 0
\(523\) 3.67840 6.37117i 0.160845 0.278592i −0.774327 0.632786i \(-0.781911\pi\)
0.935172 + 0.354194i \(0.115245\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.40736 + 2.43762i 0.0613056 + 0.106184i
\(528\) 0 0
\(529\) −7.75077 + 13.4247i −0.336990 + 0.583684i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.49648 + 4.32404i 0.108135 + 0.187295i
\(534\) 0 0
\(535\) 1.09819 0.0474788
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.21976 + 21.6432i 0.224831 + 0.932238i
\(540\) 0 0
\(541\) −14.4735 + 25.0688i −0.622262 + 1.07779i 0.366801 + 0.930299i \(0.380453\pi\)
−0.989063 + 0.147491i \(0.952880\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.410812 0.711546i 0.0175972 0.0304793i
\(546\) 0 0
\(547\) −9.34891 16.1928i −0.399731 0.692354i 0.593962 0.804493i \(-0.297563\pi\)
−0.993692 + 0.112140i \(0.964230\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.94905 0.381242
\(552\) 0 0
\(553\) 2.92392 + 7.31785i 0.124338 + 0.311187i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.1787 + 29.7544i 0.727886 + 1.26074i 0.957775 + 0.287519i \(0.0928303\pi\)
−0.229889 + 0.973217i \(0.573836\pi\)
\(558\) 0 0
\(559\) −3.99397 −0.168927
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.7471 −0.621516 −0.310758 0.950489i \(-0.600583\pi\)
−0.310758 + 0.950489i \(0.600583\pi\)
\(564\) 0 0
\(565\) 0.136449 0.00574047
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.33642 −0.139870 −0.0699349 0.997552i \(-0.522279\pi\)
−0.0699349 + 0.997552i \(0.522279\pi\)
\(570\) 0 0
\(571\) −18.8072 −0.787057 −0.393528 0.919313i \(-0.628746\pi\)
−0.393528 + 0.919313i \(0.628746\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 31.0010 1.29283
\(576\) 0 0
\(577\) −17.6961 30.6505i −0.736697 1.27600i −0.953975 0.299887i \(-0.903051\pi\)
0.217277 0.976110i \(-0.430282\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.11357 + 9.03313i −0.295121 + 0.374758i
\(582\) 0 0
\(583\) 10.0669 0.416930
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.2921 29.9508i −0.713722 1.23620i −0.963450 0.267887i \(-0.913674\pi\)
0.249728 0.968316i \(-0.419659\pi\)
\(588\) 0 0
\(589\) −2.36862 + 4.10257i −0.0975973 + 0.169043i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.9787 27.6759i 0.656166 1.13651i −0.325434 0.945565i \(-0.605510\pi\)
0.981600 0.190949i \(-0.0611564\pi\)
\(594\) 0 0
\(595\) 0.180023 + 0.0260070i 0.00738023 + 0.00106618i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9.84952 −0.402440 −0.201220 0.979546i \(-0.564491\pi\)
−0.201220 + 0.979546i \(0.564491\pi\)
\(600\) 0 0
\(601\) −3.77340 6.53572i −0.153920 0.266598i 0.778745 0.627340i \(-0.215857\pi\)
−0.932665 + 0.360743i \(0.882523\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.0273968 0.0474527i 0.00111384 0.00192923i
\(606\) 0 0
\(607\) 5.42922 + 9.40368i 0.220365 + 0.381683i 0.954919 0.296867i \(-0.0959418\pi\)
−0.734554 + 0.678550i \(0.762608\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.66175 + 2.87823i −0.0672272 + 0.116441i
\(612\) 0 0
\(613\) −23.8823 41.3653i −0.964596 1.67073i −0.710697 0.703499i \(-0.751620\pi\)
−0.253899 0.967231i \(-0.581713\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.7769 32.5225i 0.755929 1.30931i −0.188982 0.981980i \(-0.560519\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(618\) 0 0
\(619\) 17.9829 31.1472i 0.722792 1.25191i −0.237084 0.971489i \(-0.576192\pi\)
0.959876 0.280424i \(-0.0904750\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.5237 + 3.25388i 0.902393 + 0.130364i
\(624\) 0 0
\(625\) −12.4712 21.6008i −0.498848 0.864030i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.45398 −0.376955
\(630\) 0 0
\(631\) 31.8848 1.26931 0.634656 0.772794i \(-0.281142\pi\)
0.634656 + 0.772794i \(0.281142\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.142929 0.247560i −0.00567196 0.00982413i
\(636\) 0 0
\(637\) −0.828512 3.43534i −0.0328268 0.136113i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.33939 14.4442i 0.329386 0.570513i −0.653004 0.757354i \(-0.726492\pi\)
0.982390 + 0.186841i \(0.0598249\pi\)
\(642\) 0 0
\(643\) −23.5295 + 40.7544i −0.927915 + 1.60720i −0.141109 + 0.989994i \(0.545067\pi\)
−0.786805 + 0.617201i \(0.788266\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.2324 21.1872i −0.480906 0.832954i 0.518854 0.854863i \(-0.326359\pi\)
−0.999760 + 0.0219091i \(0.993026\pi\)
\(648\) 0 0
\(649\) 14.3331 24.8257i 0.562625 0.974495i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.91306 10.2417i −0.231396 0.400789i 0.726823 0.686824i \(-0.240996\pi\)
−0.958219 + 0.286035i \(0.907663\pi\)
\(654\) 0 0
\(655\) 0.00471397 0.00816484i 0.000184190 0.000319027i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.51539 + 6.08883i 0.136940 + 0.237187i 0.926337 0.376696i \(-0.122940\pi\)
−0.789397 + 0.613883i \(0.789607\pi\)
\(660\) 0 0
\(661\) 14.8605 0.578006 0.289003 0.957328i \(-0.406676\pi\)
0.289003 + 0.957328i \(0.406676\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.113585 + 0.284276i 0.00440465 + 0.0110238i
\(666\) 0 0
\(667\) 14.8699 25.7554i 0.575764 0.997253i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.0759 + 38.2366i −0.852231 + 1.47611i
\(672\) 0 0
\(673\) 7.81679 + 13.5391i 0.301315 + 0.521893i 0.976434 0.215816i \(-0.0692411\pi\)
−0.675119 + 0.737709i \(0.735908\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.7122 −0.949767 −0.474883 0.880049i \(-0.657510\pi\)
−0.474883 + 0.880049i \(0.657510\pi\)
\(678\) 0 0
\(679\) 10.7272 13.6219i 0.411674 0.522762i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.7467 29.0061i −0.640794 1.10989i −0.985256 0.171087i \(-0.945272\pi\)
0.344462 0.938800i \(-0.388061\pi\)
\(684\) 0 0
\(685\) 0.220326 0.00841821
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.59788 −0.0608745
\(690\) 0 0
\(691\) 2.67672 0.101827 0.0509137 0.998703i \(-0.483787\pi\)
0.0509137 + 0.998703i \(0.483787\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.943104 −0.0357740
\(696\) 0 0
\(697\) 10.9723 0.415607
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.3715 1.37373 0.686866 0.726784i \(-0.258986\pi\)
0.686866 + 0.726784i \(0.258986\pi\)
\(702\) 0 0
\(703\) −7.95563 13.7796i −0.300052 0.519706i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.0640 + 2.46515i 0.641758 + 0.0927114i
\(708\) 0 0
\(709\) −11.9074 −0.447191 −0.223596 0.974682i \(-0.571779\pi\)
−0.223596 + 0.974682i \(0.571779\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.87148 + 13.6338i 0.294789 + 0.510590i
\(714\) 0 0
\(715\) 0.0497501 0.0861698i 0.00186055 0.00322257i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.44050 14.6194i 0.314778 0.545211i −0.664613 0.747188i \(-0.731403\pi\)
0.979390 + 0.201977i \(0.0647367\pi\)
\(720\) 0 0
\(721\) −27.8592 + 35.3769i −1.03753 + 1.31750i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −23.9461 −0.889336
\(726\) 0 0
\(727\) −1.24570 2.15762i −0.0462006 0.0800218i 0.842000 0.539477i \(-0.181378\pi\)
−0.888201 + 0.459455i \(0.848045\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.38850 + 7.60110i −0.162314 + 0.281137i
\(732\) 0 0
\(733\) 6.25653 + 10.8366i 0.231090 + 0.400260i 0.958129 0.286336i \(-0.0924374\pi\)
−0.727039 + 0.686596i \(0.759104\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.30009 + 9.18003i −0.195231 + 0.338151i
\(738\) 0 0
\(739\) 10.0051 + 17.3294i 0.368044 + 0.637472i 0.989260 0.146168i \(-0.0466941\pi\)
−0.621215 + 0.783640i \(0.713361\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.49879 9.52419i 0.201731 0.349408i −0.747355 0.664425i \(-0.768677\pi\)
0.949086 + 0.315016i \(0.102010\pi\)
\(744\) 0 0
\(745\) 0.0113687 0.0196912i 0.000416517 0.000721428i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −46.4049 6.70388i −1.69560 0.244955i
\(750\) 0 0
\(751\) 14.4335 + 24.9996i 0.526686 + 0.912247i 0.999516 + 0.0310938i \(0.00989905\pi\)
−0.472830 + 0.881154i \(0.656768\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.779774 0.0283789
\(756\) 0 0
\(757\) −17.3626 −0.631053 −0.315527 0.948917i \(-0.602181\pi\)
−0.315527 + 0.948917i \(0.602181\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.0020 45.0367i −0.942571 1.63258i −0.760543 0.649287i \(-0.775067\pi\)
−0.182027 0.983293i \(-0.558266\pi\)
\(762\) 0 0
\(763\) −21.7028 + 27.5592i −0.785696 + 0.997712i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.27504 + 3.94049i −0.0821470 + 0.142283i
\(768\) 0 0
\(769\) 13.5839 23.5280i 0.489849 0.848443i −0.510083 0.860125i \(-0.670385\pi\)
0.999932 + 0.0116822i \(0.00371865\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.2452 21.2093i −0.440428 0.762845i 0.557293 0.830316i \(-0.311840\pi\)
−0.997721 + 0.0674716i \(0.978507\pi\)
\(774\) 0 0
\(775\) 6.33802 10.9778i 0.227668 0.394333i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.23334 + 15.9926i 0.330819 + 0.572995i
\(780\) 0 0
\(781\) 3.58845 6.21537i 0.128405 0.222403i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.169011 + 0.292736i 0.00603227 + 0.0104482i
\(786\) 0 0
\(787\) −1.87862 −0.0669657 −0.0334828 0.999439i \(-0.510660\pi\)
−0.0334828 + 0.999439i \(0.510660\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.76579 0.832955i −0.205008 0.0296165i
\(792\) 0 0
\(793\) 3.50402 6.06914i 0.124431 0.215521i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.6067 + 30.4957i −0.623662 + 1.08021i 0.365137 + 0.930954i \(0.381022\pi\)
−0.988798 + 0.149259i