# Properties

 Label 3024.2.q.l Level $3024$ Weight $2$ Character orbit 3024.q Analytic conductor $24.147$ Analytic rank $0$ Dimension $22$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$22$$ Relative dimension: $$11$$ over $$\Q(\zeta_{3})$$ Twist minimal: no (minimal twist has level 504) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

The dimension is sufficiently large that we do not compute an algebraic $$q$$-expansion, but we have computed the trace expansion.

 $$\operatorname{Tr}(f)(q) =$$ $$22q - q^{5} - 5q^{7} + O(q^{10})$$ $$\operatorname{Tr}(f)(q) =$$ $$22q - q^{5} - 5q^{7} + 3q^{11} + 7q^{13} + q^{17} - 13q^{19} - 22q^{25} + 7q^{29} + 12q^{31} + 2q^{35} + 6q^{37} - 4q^{41} - 2q^{43} - 34q^{47} - 25q^{49} - q^{53} - 2q^{55} + 42q^{59} - 62q^{61} - 6q^{65} - 52q^{67} - 32q^{71} + 17q^{73} + q^{77} - 32q^{79} - 36q^{83} + 28q^{85} + 2q^{89} - 15q^{91} + 48q^{95} + 19q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2305.1 0 0 0 −2.11148 3.65719i 0 −2.19338 + 1.47956i 0 0 0
2305.2 0 0 0 −1.89970 3.29038i 0 0.841809 2.50826i 0 0 0
2305.3 0 0 0 −1.33425 2.31099i 0 −2.54743 0.714566i 0 0 0
2305.4 0 0 0 −0.891774 1.54460i 0 2.54386 0.727153i 0 0 0
2305.5 0 0 0 −0.234085 0.405446i 0 −0.212345 + 2.63722i 0 0 0
2305.6 0 0 0 −0.0309846 0.0536670i 0 0.981674 + 2.45689i 0 0 0
2305.7 0 0 0 0.263002 + 0.455533i 0 0.333150 2.62469i 0 0 0
2305.8 0 0 0 1.05220 + 1.82246i 0 −2.58382 + 0.569079i 0 0 0
2305.9 0 0 0 1.38590 + 2.40045i 0 −1.74026 1.99286i 0 0 0
2305.10 0 0 0 1.59750 + 2.76695i 0 1.66645 2.05498i 0 0 0
2305.11 0 0 0 1.70368 + 2.95086i 0 0.410295 + 2.61374i 0 0 0
2881.1 0 0 0 −2.11148 + 3.65719i 0 −2.19338 1.47956i 0 0 0
2881.2 0 0 0 −1.89970 + 3.29038i 0 0.841809 + 2.50826i 0 0 0
2881.3 0 0 0 −1.33425 + 2.31099i 0 −2.54743 + 0.714566i 0 0 0
2881.4 0 0 0 −0.891774 + 1.54460i 0 2.54386 + 0.727153i 0 0 0
2881.5 0 0 0 −0.234085 + 0.405446i 0 −0.212345 2.63722i 0 0 0
2881.6 0 0 0 −0.0309846 + 0.0536670i 0 0.981674 2.45689i 0 0 0
2881.7 0 0 0 0.263002 0.455533i 0 0.333150 + 2.62469i 0 0 0
2881.8 0 0 0 1.05220 1.82246i 0 −2.58382 0.569079i 0 0 0
2881.9 0 0 0 1.38590 2.40045i 0 −1.74026 + 1.99286i 0 0 0
See all 22 embeddings
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2881.11 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.q.l 22
3.b odd 2 1 1008.2.q.l 22
4.b odd 2 1 1512.2.q.d 22
7.c even 3 1 3024.2.t.k 22
9.c even 3 1 3024.2.t.k 22
9.d odd 6 1 1008.2.t.l 22
12.b even 2 1 504.2.q.c 22
21.h odd 6 1 1008.2.t.l 22
28.g odd 6 1 1512.2.t.c 22
36.f odd 6 1 1512.2.t.c 22
36.h even 6 1 504.2.t.c yes 22
63.h even 3 1 inner 3024.2.q.l 22
63.j odd 6 1 1008.2.q.l 22
84.n even 6 1 504.2.t.c yes 22
252.u odd 6 1 1512.2.q.d 22
252.bb even 6 1 504.2.q.c 22

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.q.c 22 12.b even 2 1
504.2.q.c 22 252.bb even 6 1
504.2.t.c yes 22 36.h even 6 1
504.2.t.c yes 22 84.n even 6 1
1008.2.q.l 22 3.b odd 2 1
1008.2.q.l 22 63.j odd 6 1
1008.2.t.l 22 9.d odd 6 1
1008.2.t.l 22 21.h odd 6 1
1512.2.q.d 22 4.b odd 2 1
1512.2.q.d 22 252.u odd 6 1
1512.2.t.c 22 28.g odd 6 1
1512.2.t.c 22 36.f odd 6 1
3024.2.q.l 22 1.a even 1 1 trivial
3024.2.q.l 22 63.h even 3 1 inner
3024.2.t.k 22 7.c even 3 1
3024.2.t.k 22 9.c even 3 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3024, [\chi])$$:

 $$T_{5}^{22} + \cdots$$ $$T_{11}^{22} - \cdots$$

## Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database