Properties

Label 3024.2.q.k.2881.8
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.8
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.k.2305.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841578 - 1.45766i) q^{5} +(-1.65502 + 2.06419i) q^{7} +O(q^{10})\) \(q+(0.841578 - 1.45766i) q^{5} +(-1.65502 + 2.06419i) q^{7} +(-0.622490 - 1.07818i) q^{11} +(1.96039 + 3.39550i) q^{13} +(1.62691 - 2.81788i) q^{17} +(-2.36192 - 4.09097i) q^{19} +(0.199068 - 0.344795i) q^{23} +(1.08349 + 1.87667i) q^{25} +(3.19896 - 5.54076i) q^{29} +0.578367 q^{31} +(1.61605 + 4.14963i) q^{35} +(2.72146 + 4.71371i) q^{37} +(-4.20216 - 7.27836i) q^{41} +(-2.46299 + 4.26603i) q^{43} -0.425190 q^{47} +(-1.52179 - 6.83258i) q^{49} +(0.466315 - 0.807681i) q^{53} -2.09550 q^{55} +6.05054 q^{59} +10.2092 q^{61} +6.59930 q^{65} +9.41952 q^{67} +8.46617 q^{71} +(6.82340 - 11.8185i) q^{73} +(3.25582 + 0.499480i) q^{77} +5.53340 q^{79} +(-8.03669 + 13.9199i) q^{83} +(-2.73833 - 4.74293i) q^{85} +(6.03776 + 10.4577i) q^{89} +(-10.2535 - 1.57300i) q^{91} -7.95097 q^{95} +(-5.86046 + 10.1506i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.841578 1.45766i 0.376365 0.651883i −0.614165 0.789177i \(-0.710507\pi\)
0.990530 + 0.137294i \(0.0438405\pi\)
\(6\) 0 0
\(7\) −1.65502 + 2.06419i −0.625540 + 0.780192i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.622490 1.07818i −0.187688 0.325085i 0.756791 0.653657i \(-0.226766\pi\)
−0.944479 + 0.328572i \(0.893433\pi\)
\(12\) 0 0
\(13\) 1.96039 + 3.39550i 0.543715 + 0.941743i 0.998687 + 0.0512366i \(0.0163162\pi\)
−0.454971 + 0.890506i \(0.650350\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.62691 2.81788i 0.394582 0.683437i −0.598465 0.801149i \(-0.704223\pi\)
0.993048 + 0.117712i \(0.0375559\pi\)
\(18\) 0 0
\(19\) −2.36192 4.09097i −0.541863 0.938534i −0.998797 0.0490333i \(-0.984386\pi\)
0.456935 0.889500i \(-0.348947\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.199068 0.344795i 0.0415085 0.0718948i −0.844525 0.535516i \(-0.820117\pi\)
0.886033 + 0.463622i \(0.153450\pi\)
\(24\) 0 0
\(25\) 1.08349 + 1.87667i 0.216699 + 0.375333i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.19896 5.54076i 0.594032 1.02889i −0.399651 0.916667i \(-0.630869\pi\)
0.993683 0.112226i \(-0.0357979\pi\)
\(30\) 0 0
\(31\) 0.578367 0.103878 0.0519389 0.998650i \(-0.483460\pi\)
0.0519389 + 0.998650i \(0.483460\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.61605 + 4.14963i 0.273163 + 0.701416i
\(36\) 0 0
\(37\) 2.72146 + 4.71371i 0.447405 + 0.774928i 0.998216 0.0597015i \(-0.0190149\pi\)
−0.550811 + 0.834630i \(0.685682\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.20216 7.27836i −0.656267 1.13669i −0.981574 0.191080i \(-0.938801\pi\)
0.325307 0.945608i \(-0.394532\pi\)
\(42\) 0 0
\(43\) −2.46299 + 4.26603i −0.375603 + 0.650563i −0.990417 0.138109i \(-0.955898\pi\)
0.614814 + 0.788672i \(0.289231\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.425190 −0.0620203 −0.0310101 0.999519i \(-0.509872\pi\)
−0.0310101 + 0.999519i \(0.509872\pi\)
\(48\) 0 0
\(49\) −1.52179 6.83258i −0.217399 0.976083i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.466315 0.807681i 0.0640533 0.110944i −0.832220 0.554445i \(-0.812931\pi\)
0.896274 + 0.443501i \(0.146264\pi\)
\(54\) 0 0
\(55\) −2.09550 −0.282557
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.05054 0.787713 0.393856 0.919172i \(-0.371141\pi\)
0.393856 + 0.919172i \(0.371141\pi\)
\(60\) 0 0
\(61\) 10.2092 1.30715 0.653575 0.756862i \(-0.273268\pi\)
0.653575 + 0.756862i \(0.273268\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.59930 0.818542
\(66\) 0 0
\(67\) 9.41952 1.15078 0.575389 0.817880i \(-0.304851\pi\)
0.575389 + 0.817880i \(0.304851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.46617 1.00475 0.502375 0.864650i \(-0.332460\pi\)
0.502375 + 0.864650i \(0.332460\pi\)
\(72\) 0 0
\(73\) 6.82340 11.8185i 0.798619 1.38325i −0.121897 0.992543i \(-0.538898\pi\)
0.920516 0.390705i \(-0.127769\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.25582 + 0.499480i 0.371035 + 0.0569211i
\(78\) 0 0
\(79\) 5.53340 0.622556 0.311278 0.950319i \(-0.399243\pi\)
0.311278 + 0.950319i \(0.399243\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.03669 + 13.9199i −0.882141 + 1.52791i −0.0331848 + 0.999449i \(0.510565\pi\)
−0.848956 + 0.528463i \(0.822768\pi\)
\(84\) 0 0
\(85\) −2.73833 4.74293i −0.297014 0.514444i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.03776 + 10.4577i 0.640001 + 1.10851i 0.985432 + 0.170070i \(0.0543993\pi\)
−0.345431 + 0.938444i \(0.612267\pi\)
\(90\) 0 0
\(91\) −10.2535 1.57300i −1.07486 0.164895i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.95097 −0.815753
\(96\) 0 0
\(97\) −5.86046 + 10.1506i −0.595040 + 1.03064i 0.398501 + 0.917168i \(0.369530\pi\)
−0.993541 + 0.113472i \(0.963803\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.70302 + 4.68177i 0.268961 + 0.465854i 0.968594 0.248649i \(-0.0799865\pi\)
−0.699633 + 0.714502i \(0.746653\pi\)
\(102\) 0 0
\(103\) 7.31018 12.6616i 0.720294 1.24759i −0.240588 0.970627i \(-0.577340\pi\)
0.960882 0.276958i \(-0.0893263\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.40209 5.89259i −0.328892 0.569658i 0.653400 0.757013i \(-0.273342\pi\)
−0.982292 + 0.187354i \(0.940009\pi\)
\(108\) 0 0
\(109\) 8.37636 14.5083i 0.802310 1.38964i −0.115783 0.993275i \(-0.536938\pi\)
0.918092 0.396367i \(-0.129729\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.77154 11.7287i −0.637013 1.10334i −0.986085 0.166243i \(-0.946836\pi\)
0.349072 0.937096i \(-0.386497\pi\)
\(114\) 0 0
\(115\) −0.335062 0.580344i −0.0312447 0.0541174i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.12409 + 8.02191i 0.286385 + 0.735367i
\(120\) 0 0
\(121\) 4.72501 8.18396i 0.429547 0.743996i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0632 1.07896
\(126\) 0 0
\(127\) −10.5904 −0.939748 −0.469874 0.882734i \(-0.655701\pi\)
−0.469874 + 0.882734i \(0.655701\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.1819 19.3676i 0.976968 1.69216i 0.303685 0.952772i \(-0.401783\pi\)
0.673282 0.739385i \(-0.264884\pi\)
\(132\) 0 0
\(133\) 12.3536 + 1.89519i 1.07119 + 0.164333i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.97700 + 15.5486i 0.766957 + 1.32841i 0.939206 + 0.343354i \(0.111563\pi\)
−0.172249 + 0.985053i \(0.555104\pi\)
\(138\) 0 0
\(139\) −0.570825 0.988699i −0.0484168 0.0838603i 0.840801 0.541344i \(-0.182084\pi\)
−0.889218 + 0.457483i \(0.848751\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44065 4.22733i 0.204098 0.353507i
\(144\) 0 0
\(145\) −5.38434 9.32596i −0.447145 0.774479i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.82916 15.2925i 0.723313 1.25281i −0.236352 0.971667i \(-0.575952\pi\)
0.959665 0.281147i \(-0.0907148\pi\)
\(150\) 0 0
\(151\) −7.61769 13.1942i −0.619919 1.07373i −0.989500 0.144532i \(-0.953832\pi\)
0.369581 0.929198i \(-0.379501\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.486741 0.843060i 0.0390960 0.0677162i
\(156\) 0 0
\(157\) −13.6288 −1.08769 −0.543847 0.839184i \(-0.683033\pi\)
−0.543847 + 0.839184i \(0.683033\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.382263 + 0.981559i 0.0301265 + 0.0773577i
\(162\) 0 0
\(163\) 4.04726 + 7.01005i 0.317006 + 0.549070i 0.979862 0.199677i \(-0.0639893\pi\)
−0.662856 + 0.748747i \(0.730656\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.07739 3.59814i −0.160753 0.278433i 0.774386 0.632714i \(-0.218059\pi\)
−0.935139 + 0.354281i \(0.884726\pi\)
\(168\) 0 0
\(169\) −1.18629 + 2.05471i −0.0912529 + 0.158055i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.8346 −1.05183 −0.525913 0.850539i \(-0.676276\pi\)
−0.525913 + 0.850539i \(0.676276\pi\)
\(174\) 0 0
\(175\) −5.66701 0.869385i −0.428386 0.0657193i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.71167 + 8.16084i −0.352166 + 0.609970i −0.986629 0.162984i \(-0.947888\pi\)
0.634462 + 0.772954i \(0.281222\pi\)
\(180\) 0 0
\(181\) 1.32133 0.0982136 0.0491068 0.998794i \(-0.484363\pi\)
0.0491068 + 0.998794i \(0.484363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.16128 0.673551
\(186\) 0 0
\(187\) −4.05093 −0.296233
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.2854 1.17837 0.589186 0.807997i \(-0.299449\pi\)
0.589186 + 0.807997i \(0.299449\pi\)
\(192\) 0 0
\(193\) 2.56155 0.184384 0.0921921 0.995741i \(-0.470613\pi\)
0.0921921 + 0.995741i \(0.470613\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.6916 −1.54546 −0.772730 0.634735i \(-0.781109\pi\)
−0.772730 + 0.634735i \(0.781109\pi\)
\(198\) 0 0
\(199\) 5.59684 9.69402i 0.396750 0.687191i −0.596573 0.802559i \(-0.703471\pi\)
0.993323 + 0.115368i \(0.0368047\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.14285 + 15.7734i 0.431143 + 1.10707i
\(204\) 0 0
\(205\) −14.1458 −0.987985
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.94055 + 5.09318i −0.203402 + 0.352303i
\(210\) 0 0
\(211\) 14.1807 + 24.5616i 0.976237 + 1.69089i 0.675793 + 0.737092i \(0.263801\pi\)
0.300444 + 0.953799i \(0.402865\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.14560 + 7.18039i 0.282728 + 0.489699i
\(216\) 0 0
\(217\) −0.957211 + 1.19386i −0.0649797 + 0.0810446i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.7575 0.858162
\(222\) 0 0
\(223\) 12.6962 21.9905i 0.850202 1.47259i −0.0308242 0.999525i \(-0.509813\pi\)
0.881026 0.473068i \(-0.156853\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.31430 4.00849i −0.153606 0.266053i 0.778945 0.627092i \(-0.215755\pi\)
−0.932550 + 0.361040i \(0.882422\pi\)
\(228\) 0 0
\(229\) −1.16296 + 2.01431i −0.0768506 + 0.133109i −0.901890 0.431967i \(-0.857820\pi\)
0.825039 + 0.565076i \(0.191153\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.37989 + 11.0503i 0.417960 + 0.723929i 0.995734 0.0922683i \(-0.0294117\pi\)
−0.577774 + 0.816197i \(0.696078\pi\)
\(234\) 0 0
\(235\) −0.357830 + 0.619780i −0.0233423 + 0.0404300i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0492 19.1378i −0.714714 1.23792i −0.963070 0.269252i \(-0.913223\pi\)
0.248355 0.968669i \(-0.420110\pi\)
\(240\) 0 0
\(241\) −10.0088 17.3358i −0.644726 1.11670i −0.984365 0.176142i \(-0.943638\pi\)
0.339639 0.940556i \(-0.389695\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.2403 3.53190i −0.718114 0.225645i
\(246\) 0 0
\(247\) 9.26060 16.0398i 0.589238 1.02059i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.12390 −0.134059 −0.0670297 0.997751i \(-0.521352\pi\)
−0.0670297 + 0.997751i \(0.521352\pi\)
\(252\) 0 0
\(253\) −0.495671 −0.0311625
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.38150 + 11.0531i −0.398067 + 0.689472i −0.993487 0.113942i \(-0.963652\pi\)
0.595420 + 0.803414i \(0.296986\pi\)
\(258\) 0 0
\(259\) −14.2341 2.18367i −0.884463 0.135687i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.53432 + 9.58572i 0.341261 + 0.591081i 0.984667 0.174444i \(-0.0558127\pi\)
−0.643406 + 0.765525i \(0.722479\pi\)
\(264\) 0 0
\(265\) −0.784881 1.35945i −0.0482148 0.0835105i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.77479 3.07403i 0.108211 0.187427i −0.806835 0.590777i \(-0.798821\pi\)
0.915046 + 0.403351i \(0.132154\pi\)
\(270\) 0 0
\(271\) 0.687666 + 1.19107i 0.0417727 + 0.0723525i 0.886156 0.463387i \(-0.153366\pi\)
−0.844383 + 0.535740i \(0.820033\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.34893 2.33641i 0.0813434 0.140891i
\(276\) 0 0
\(277\) 14.5809 + 25.2548i 0.876079 + 1.51741i 0.855609 + 0.517622i \(0.173183\pi\)
0.0204692 + 0.999790i \(0.493484\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.29603 + 10.9050i −0.375590 + 0.650540i −0.990415 0.138123i \(-0.955893\pi\)
0.614826 + 0.788663i \(0.289226\pi\)
\(282\) 0 0
\(283\) 9.46056 0.562372 0.281186 0.959653i \(-0.409272\pi\)
0.281186 + 0.959653i \(0.409272\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.9786 + 3.37178i 1.29736 + 0.199030i
\(288\) 0 0
\(289\) 3.20636 + 5.55358i 0.188609 + 0.326681i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.32726 + 14.4232i 0.486484 + 0.842614i 0.999879 0.0155376i \(-0.00494598\pi\)
−0.513396 + 0.858152i \(0.671613\pi\)
\(294\) 0 0
\(295\) 5.09200 8.81960i 0.296468 0.513497i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.56100 0.0902752
\(300\) 0 0
\(301\) −4.72960 12.1445i −0.272610 0.699996i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.59181 14.8815i 0.491966 0.852110i
\(306\) 0 0
\(307\) 9.55966 0.545599 0.272799 0.962071i \(-0.412051\pi\)
0.272799 + 0.962071i \(0.412051\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.3702 1.49532 0.747658 0.664084i \(-0.231178\pi\)
0.747658 + 0.664084i \(0.231178\pi\)
\(312\) 0 0
\(313\) −12.7018 −0.717949 −0.358975 0.933347i \(-0.616874\pi\)
−0.358975 + 0.933347i \(0.616874\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.0331536 −0.00186209 −0.000931047 1.00000i \(-0.500296\pi\)
−0.000931047 1.00000i \(0.500296\pi\)
\(318\) 0 0
\(319\) −7.96528 −0.445970
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.3705 −0.855238
\(324\) 0 0
\(325\) −4.24815 + 7.35801i −0.235645 + 0.408149i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.703699 0.877674i 0.0387962 0.0483877i
\(330\) 0 0
\(331\) 4.85388 0.266793 0.133397 0.991063i \(-0.457412\pi\)
0.133397 + 0.991063i \(0.457412\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.92726 13.7304i 0.433112 0.750173i
\(336\) 0 0
\(337\) −4.32200 7.48592i −0.235434 0.407784i 0.723965 0.689837i \(-0.242318\pi\)
−0.959399 + 0.282053i \(0.908985\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.360028 0.623586i −0.0194966 0.0337691i
\(342\) 0 0
\(343\) 16.6224 + 8.16680i 0.897524 + 0.440966i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −23.2232 −1.24669 −0.623344 0.781948i \(-0.714226\pi\)
−0.623344 + 0.781948i \(0.714226\pi\)
\(348\) 0 0
\(349\) −3.76025 + 6.51295i −0.201282 + 0.348630i −0.948942 0.315452i \(-0.897844\pi\)
0.747660 + 0.664082i \(0.231177\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.459528 0.795925i −0.0244582 0.0423628i 0.853537 0.521032i \(-0.174453\pi\)
−0.877995 + 0.478669i \(0.841119\pi\)
\(354\) 0 0
\(355\) 7.12495 12.3408i 0.378153 0.654980i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.24300 + 14.2773i 0.435049 + 0.753527i 0.997300 0.0734398i \(-0.0233977\pi\)
−0.562251 + 0.826967i \(0.690064\pi\)
\(360\) 0 0
\(361\) −1.65737 + 2.87066i −0.0872302 + 0.151087i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.4848 19.8923i −0.601144 1.04121i
\(366\) 0 0
\(367\) −6.33921 10.9798i −0.330904 0.573143i 0.651785 0.758404i \(-0.274020\pi\)
−0.982689 + 0.185261i \(0.940687\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.895448 + 2.29930i 0.0464894 + 0.119373i
\(372\) 0 0
\(373\) −11.3410 + 19.6433i −0.587217 + 1.01709i 0.407378 + 0.913259i \(0.366443\pi\)
−0.994595 + 0.103830i \(0.966890\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.0849 1.29194
\(378\) 0 0
\(379\) −19.0925 −0.980717 −0.490358 0.871521i \(-0.663134\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.03963 5.26479i 0.155318 0.269018i −0.777857 0.628441i \(-0.783693\pi\)
0.933175 + 0.359423i \(0.117027\pi\)
\(384\) 0 0
\(385\) 3.46809 4.32551i 0.176750 0.220448i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.315781 0.546948i −0.0160107 0.0277314i 0.857909 0.513802i \(-0.171763\pi\)
−0.873920 + 0.486070i \(0.838430\pi\)
\(390\) 0 0
\(391\) −0.647728 1.12190i −0.0327570 0.0567368i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.65679 8.06579i 0.234308 0.405834i
\(396\) 0 0
\(397\) −18.1830 31.4939i −0.912578 1.58063i −0.810408 0.585865i \(-0.800755\pi\)
−0.102170 0.994767i \(-0.532579\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.8069 + 27.3783i −0.789357 + 1.36721i 0.137004 + 0.990571i \(0.456253\pi\)
−0.926361 + 0.376636i \(0.877081\pi\)
\(402\) 0 0
\(403\) 1.13383 + 1.96385i 0.0564800 + 0.0978262i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.38816 5.86847i 0.167945 0.290889i
\(408\) 0 0
\(409\) 20.1812 0.997896 0.498948 0.866632i \(-0.333720\pi\)
0.498948 + 0.866632i \(0.333720\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0138 + 12.4895i −0.492746 + 0.614567i
\(414\) 0 0
\(415\) 13.5270 + 23.4294i 0.664014 + 1.15011i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.4159 21.5049i −0.606555 1.05058i −0.991804 0.127772i \(-0.959217\pi\)
0.385248 0.922813i \(-0.374116\pi\)
\(420\) 0 0
\(421\) −5.71841 + 9.90458i −0.278698 + 0.482720i −0.971062 0.238829i \(-0.923236\pi\)
0.692363 + 0.721549i \(0.256570\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.05096 0.342022
\(426\) 0 0
\(427\) −16.8964 + 21.0737i −0.817675 + 1.01983i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.80157 4.85246i 0.134947 0.233735i −0.790630 0.612294i \(-0.790247\pi\)
0.925577 + 0.378559i \(0.123580\pi\)
\(432\) 0 0
\(433\) −4.22555 −0.203067 −0.101534 0.994832i \(-0.532375\pi\)
−0.101534 + 0.994832i \(0.532375\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.88073 −0.0899676
\(438\) 0 0
\(439\) 35.4631 1.69256 0.846281 0.532737i \(-0.178836\pi\)
0.846281 + 0.532737i \(0.178836\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.9315 −1.08951 −0.544755 0.838595i \(-0.683377\pi\)
−0.544755 + 0.838595i \(0.683377\pi\)
\(444\) 0 0
\(445\) 20.3250 0.963496
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.4850 −0.966747 −0.483373 0.875414i \(-0.660589\pi\)
−0.483373 + 0.875414i \(0.660589\pi\)
\(450\) 0 0
\(451\) −5.23161 + 9.06141i −0.246347 + 0.426685i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.9220 + 13.6222i −0.512031 + 0.638620i
\(456\) 0 0
\(457\) 15.4535 0.722886 0.361443 0.932394i \(-0.382284\pi\)
0.361443 + 0.932394i \(0.382284\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0815 + 24.3898i −0.655839 + 1.13595i 0.325844 + 0.945424i \(0.394352\pi\)
−0.981683 + 0.190523i \(0.938982\pi\)
\(462\) 0 0
\(463\) 15.3193 + 26.5338i 0.711948 + 1.23313i 0.964125 + 0.265449i \(0.0855202\pi\)
−0.252177 + 0.967681i \(0.581146\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.61798 11.4627i −0.306244 0.530429i 0.671294 0.741191i \(-0.265739\pi\)
−0.977537 + 0.210762i \(0.932406\pi\)
\(468\) 0 0
\(469\) −15.5895 + 19.4437i −0.719857 + 0.897827i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.13275 0.281984
\(474\) 0 0
\(475\) 5.11826 8.86508i 0.234842 0.406758i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.04358 12.1998i −0.321829 0.557425i 0.659036 0.752111i \(-0.270964\pi\)
−0.980866 + 0.194687i \(0.937631\pi\)
\(480\) 0 0
\(481\) −10.6703 + 18.4814i −0.486522 + 0.842681i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.86407 + 17.0851i 0.447904 + 0.775793i
\(486\) 0 0
\(487\) −3.45654 + 5.98690i −0.156631 + 0.271292i −0.933652 0.358183i \(-0.883397\pi\)
0.777021 + 0.629475i \(0.216730\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.3481 26.5837i −0.692651 1.19971i −0.970966 0.239217i \(-0.923109\pi\)
0.278315 0.960490i \(-0.410224\pi\)
\(492\) 0 0
\(493\) −10.4088 18.0286i −0.468789 0.811966i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.0117 + 17.4758i −0.628511 + 0.783898i
\(498\) 0 0
\(499\) −11.0186 + 19.0847i −0.493259 + 0.854350i −0.999970 0.00776631i \(-0.997528\pi\)
0.506711 + 0.862116i \(0.330861\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 38.9653 1.73737 0.868687 0.495361i \(-0.164964\pi\)
0.868687 + 0.495361i \(0.164964\pi\)
\(504\) 0 0
\(505\) 9.09922 0.404910
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.1471 + 24.5034i −0.627058 + 1.08610i 0.361082 + 0.932534i \(0.382408\pi\)
−0.988139 + 0.153561i \(0.950926\pi\)
\(510\) 0 0
\(511\) 13.1027 + 33.6447i 0.579631 + 1.48835i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.3042 21.3115i −0.542187 0.939095i
\(516\) 0 0
\(517\) 0.264676 + 0.458433i 0.0116405 + 0.0201619i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.98150 10.3603i 0.262054 0.453892i −0.704733 0.709472i \(-0.748933\pi\)
0.966788 + 0.255581i \(0.0822667\pi\)
\(522\) 0 0
\(523\) 3.15056 + 5.45693i 0.137764 + 0.238615i 0.926650 0.375925i \(-0.122675\pi\)
−0.788886 + 0.614540i \(0.789342\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.940948 1.62977i 0.0409884 0.0709939i
\(528\) 0 0
\(529\) 11.4207 + 19.7813i 0.496554 + 0.860057i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.4758 28.5369i 0.713645 1.23607i
\(534\) 0 0
\(535\) −11.4525 −0.495135
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.41948 + 5.89399i −0.276507 + 0.253872i
\(540\) 0 0
\(541\) 9.88191 + 17.1160i 0.424857 + 0.735873i 0.996407 0.0846937i \(-0.0269912\pi\)
−0.571550 + 0.820567i \(0.693658\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.0987 24.4197i −0.603923 1.04602i
\(546\) 0 0
\(547\) −21.6125 + 37.4340i −0.924085 + 1.60056i −0.131059 + 0.991375i \(0.541838\pi\)
−0.793026 + 0.609188i \(0.791496\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −30.2228 −1.28753
\(552\) 0 0
\(553\) −9.15791 + 11.4220i −0.389434 + 0.485713i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0838 24.3938i 0.596748 1.03360i −0.396550 0.918013i \(-0.629793\pi\)
0.993298 0.115584i \(-0.0368740\pi\)
\(558\) 0 0
\(559\) −19.3137 −0.816884
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.6944 1.08289 0.541445 0.840736i \(-0.317878\pi\)
0.541445 + 0.840736i \(0.317878\pi\)
\(564\) 0 0
\(565\) −22.7951 −0.958998
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.4881 −1.48774 −0.743870 0.668324i \(-0.767012\pi\)
−0.743870 + 0.668324i \(0.767012\pi\)
\(570\) 0 0
\(571\) −21.6824 −0.907378 −0.453689 0.891160i \(-0.649892\pi\)
−0.453689 + 0.891160i \(0.649892\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.862754 0.0359793
\(576\) 0 0
\(577\) −7.60727 + 13.1762i −0.316695 + 0.548531i −0.979796 0.199998i \(-0.935906\pi\)
0.663102 + 0.748529i \(0.269240\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.4326 39.6271i −0.640251 1.64401i
\(582\) 0 0
\(583\) −1.16111 −0.0480881
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.1924 + 33.2423i −0.792157 + 1.37206i 0.132472 + 0.991187i \(0.457708\pi\)
−0.924629 + 0.380869i \(0.875625\pi\)
\(588\) 0 0
\(589\) −1.36606 2.36608i −0.0562875 0.0974928i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.25559 + 16.0311i 0.380081 + 0.658320i 0.991074 0.133316i \(-0.0425626\pi\)
−0.610992 + 0.791637i \(0.709229\pi\)
\(594\) 0 0
\(595\) 14.3223 + 2.19721i 0.587159 + 0.0900770i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.6825 −0.885924 −0.442962 0.896540i \(-0.646072\pi\)
−0.442962 + 0.896540i \(0.646072\pi\)
\(600\) 0 0
\(601\) 3.95776 6.85505i 0.161441 0.279623i −0.773945 0.633253i \(-0.781719\pi\)
0.935386 + 0.353630i \(0.115053\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.95293 13.7749i −0.323333 0.560029i
\(606\) 0 0
\(607\) 17.9623 31.1117i 0.729068 1.26278i −0.228209 0.973612i \(-0.573287\pi\)
0.957277 0.289171i \(-0.0933797\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.833539 1.44373i −0.0337214 0.0584072i
\(612\) 0 0
\(613\) −1.60252 + 2.77565i −0.0647253 + 0.112108i −0.896572 0.442898i \(-0.853950\pi\)
0.831847 + 0.555005i \(0.187284\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.9357 27.6015i −0.641549 1.11120i −0.985087 0.172056i \(-0.944959\pi\)
0.343538 0.939139i \(-0.388374\pi\)
\(618\) 0 0
\(619\) −10.4863 18.1628i −0.421480 0.730024i 0.574605 0.818431i \(-0.305156\pi\)
−0.996084 + 0.0884070i \(0.971822\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −31.5793 4.84464i −1.26520 0.194096i
\(624\) 0 0
\(625\) 4.73462 8.20060i 0.189385 0.328024i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.7102 0.706153
\(630\) 0 0
\(631\) −26.4435 −1.05270 −0.526349 0.850268i \(-0.676440\pi\)
−0.526349 + 0.850268i \(0.676440\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.91266 + 15.4372i −0.353688 + 0.612606i
\(636\) 0 0
\(637\) 20.2167 18.5618i 0.801016 0.735445i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.9809 24.2157i −0.552213 0.956461i −0.998115 0.0613792i \(-0.980450\pi\)
0.445901 0.895082i \(-0.352883\pi\)
\(642\) 0 0
\(643\) 6.12936 + 10.6164i 0.241718 + 0.418669i 0.961204 0.275839i \(-0.0889556\pi\)
−0.719485 + 0.694508i \(0.755622\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.49923 7.79290i 0.176883 0.306371i −0.763928 0.645301i \(-0.776732\pi\)
0.940811 + 0.338931i \(0.110065\pi\)
\(648\) 0 0
\(649\) −3.76640 6.52360i −0.147844 0.256074i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.3950 + 19.7368i −0.445922 + 0.772359i −0.998116 0.0613562i \(-0.980457\pi\)
0.552194 + 0.833716i \(0.313791\pi\)
\(654\) 0 0
\(655\) −18.8209 32.5987i −0.735393 1.27374i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.3311 + 33.4824i −0.753033 + 1.30429i 0.193314 + 0.981137i \(0.438076\pi\)
−0.946347 + 0.323154i \(0.895257\pi\)
\(660\) 0 0
\(661\) −11.5080 −0.447609 −0.223804 0.974634i \(-0.571848\pi\)
−0.223804 + 0.974634i \(0.571848\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.1590 16.4124i 0.510286 0.636444i
\(666\) 0 0
\(667\) −1.27362 2.20597i −0.0493147 0.0854156i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.35511 11.0074i −0.245336 0.424935i
\(672\) 0 0
\(673\) −10.6642 + 18.4709i −0.411075 + 0.712002i −0.995008 0.0997997i \(-0.968180\pi\)
0.583933 + 0.811802i \(0.301513\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.7599 −1.06690 −0.533449 0.845832i \(-0.679104\pi\)
−0.533449 + 0.845832i \(0.679104\pi\)
\(678\) 0 0
\(679\) −11.2536 28.8966i −0.431875 1.10895i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.66854 + 15.0143i −0.331692 + 0.574508i −0.982844 0.184440i \(-0.940953\pi\)
0.651151 + 0.758948i \(0.274286\pi\)
\(684\) 0 0
\(685\) 30.2194 1.15462
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.65664 0.139307
\(690\) 0 0
\(691\) −39.6046 −1.50663 −0.753315 0.657660i \(-0.771547\pi\)
−0.753315 + 0.657660i \(0.771547\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.92158 −0.0728895
\(696\) 0 0
\(697\) −27.3461 −1.03581
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.28469 −0.275139 −0.137570 0.990492i \(-0.543929\pi\)
−0.137570 + 0.990492i \(0.543929\pi\)
\(702\) 0 0
\(703\) 12.8558 22.2668i 0.484864 0.839809i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.1377 2.16888i −0.531701 0.0815691i
\(708\) 0 0
\(709\) 12.0108 0.451075 0.225538 0.974234i \(-0.427586\pi\)
0.225538 + 0.974234i \(0.427586\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.115134 0.199418i 0.00431181 0.00746827i
\(714\) 0 0
\(715\) −4.10800 7.11526i −0.153630 0.266096i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.15819 3.73809i −0.0804868 0.139407i 0.822972 0.568081i \(-0.192314\pi\)
−0.903459 + 0.428674i \(0.858981\pi\)
\(720\) 0 0
\(721\) 14.0375 + 36.0449i 0.522783 + 1.34238i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.8642 0.514903
\(726\) 0 0
\(727\) −10.2483 + 17.7506i −0.380090 + 0.658334i −0.991075 0.133308i \(-0.957440\pi\)
0.610985 + 0.791642i \(0.290774\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.01411 + 13.8808i 0.296413 + 0.513402i
\(732\) 0 0
\(733\) −12.6661 + 21.9383i −0.467833 + 0.810310i −0.999324 0.0367533i \(-0.988298\pi\)
0.531491 + 0.847064i \(0.321632\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.86356 10.1560i −0.215987 0.374100i
\(738\) 0 0
\(739\) 6.63391 11.4903i 0.244032 0.422676i −0.717827 0.696222i \(-0.754863\pi\)
0.961859 + 0.273545i \(0.0881964\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.6116 + 39.1644i 0.829538 + 1.43680i 0.898401 + 0.439176i \(0.144730\pi\)
−0.0688624 + 0.997626i \(0.521937\pi\)
\(744\) 0 0
\(745\) −14.8608 25.7397i −0.544459 0.943031i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.7940 + 2.72981i 0.650178 + 0.0997449i
\(750\) 0 0
\(751\) −14.1898 + 24.5775i −0.517795 + 0.896847i 0.481992 + 0.876176i \(0.339914\pi\)
−0.999786 + 0.0206709i \(0.993420\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.6435 −0.933263
\(756\) 0 0
\(757\) 5.08483 0.184811 0.0924056 0.995721i \(-0.470544\pi\)
0.0924056 + 0.995721i \(0.470544\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.8612 32.6686i 0.683720 1.18424i −0.290118 0.956991i \(-0.593694\pi\)
0.973837 0.227246i \(-0.0729722\pi\)
\(762\) 0 0
\(763\) 16.0848 + 41.3020i 0.582310 + 1.49523i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.8614 + 20.5446i 0.428292 + 0.741823i
\(768\) 0 0
\(769\) 11.8729 + 20.5644i 0.428147 + 0.741572i 0.996709 0.0810688i \(-0.0258333\pi\)
−0.568562 + 0.822641i \(0.692500\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5347 + 33.8351i −0.702614 + 1.21696i 0.264932 + 0.964267i \(0.414650\pi\)
−0.967546 + 0.252696i \(0.918683\pi\)
\(774\) 0 0
\(775\) 0.626657 + 1.08540i 0.0225102 + 0.0389888i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −19.8504 + 34.3819i −0.711214 + 1.23186i
\(780\) 0 0
\(781\) −5.27011 9.12810i −0.188579 0.326629i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.4697 + 19.8661i −0.409370 + 0.709050i
\(786\) 0 0
\(787\) −3.80915 −0.135782 −0.0678908 0.997693i \(-0.521627\pi\)
−0.0678908 + 0.997693i \(0.521627\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 35.4173 + 5.43342i 1.25929 + 0.193190i
\(792\) 0 0
\(793\) 20.0140 + 34.6653i 0.710718 + 1.23100i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.8239 + 18.7476i 0.383404 + 0.664075i 0.991546 0.129753i \(-0.0414184\pi\)
−0.608143 + 0.793828i \(0.708085\pi\)