Properties

Label 3024.2.q.k.2881.6
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.6
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.k.2305.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.240694 + 0.416893i) q^{5} +(1.92765 + 1.81223i) q^{7} +O(q^{10})\) \(q+(-0.240694 + 0.416893i) q^{5} +(1.92765 + 1.81223i) q^{7} +(-1.69080 - 2.92855i) q^{11} +(-2.86067 - 4.95482i) q^{13} +(-2.75605 + 4.77362i) q^{17} +(-2.18023 - 3.77626i) q^{19} +(-1.81293 + 3.14008i) q^{23} +(2.38413 + 4.12944i) q^{25} +(-1.53131 + 2.65231i) q^{29} +9.34918 q^{31} +(-1.21948 + 0.367431i) q^{35} +(1.48552 + 2.57299i) q^{37} +(6.29558 + 10.9043i) q^{41} +(-1.90827 + 3.30522i) q^{43} -3.76564 q^{47} +(0.431647 + 6.98668i) q^{49} +(-5.57860 + 9.66242i) q^{53} +1.62786 q^{55} +8.42282 q^{59} -7.28625 q^{61} +2.75418 q^{65} -2.57143 q^{67} -3.94304 q^{71} +(-0.862216 + 1.49340i) q^{73} +(2.04794 - 8.70932i) q^{77} +5.59960 q^{79} +(-0.119494 + 0.206970i) q^{83} +(-1.32673 - 2.29796i) q^{85} +(-0.648116 - 1.12257i) q^{89} +(3.46492 - 14.7353i) q^{91} +2.09907 q^{95} +(-7.02669 + 12.1706i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.240694 + 0.416893i −0.107641 + 0.186440i −0.914814 0.403875i \(-0.867663\pi\)
0.807173 + 0.590315i \(0.200997\pi\)
\(6\) 0 0
\(7\) 1.92765 + 1.81223i 0.728582 + 0.684958i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.69080 2.92855i −0.509794 0.882990i −0.999936 0.0113468i \(-0.996388\pi\)
0.490141 0.871643i \(-0.336945\pi\)
\(12\) 0 0
\(13\) −2.86067 4.95482i −0.793406 1.37422i −0.923846 0.382764i \(-0.874972\pi\)
0.130440 0.991456i \(-0.458361\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.75605 + 4.77362i −0.668440 + 1.15777i 0.309900 + 0.950769i \(0.399704\pi\)
−0.978340 + 0.207003i \(0.933629\pi\)
\(18\) 0 0
\(19\) −2.18023 3.77626i −0.500178 0.866334i −1.00000 0.000205746i \(-0.999935\pi\)
0.499822 0.866128i \(-0.333399\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.81293 + 3.14008i −0.378021 + 0.654752i −0.990774 0.135523i \(-0.956729\pi\)
0.612753 + 0.790274i \(0.290062\pi\)
\(24\) 0 0
\(25\) 2.38413 + 4.12944i 0.476827 + 0.825888i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.53131 + 2.65231i −0.284358 + 0.492522i −0.972453 0.233098i \(-0.925114\pi\)
0.688095 + 0.725620i \(0.258447\pi\)
\(30\) 0 0
\(31\) 9.34918 1.67916 0.839581 0.543235i \(-0.182801\pi\)
0.839581 + 0.543235i \(0.182801\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.21948 + 0.367431i −0.206130 + 0.0621072i
\(36\) 0 0
\(37\) 1.48552 + 2.57299i 0.244218 + 0.422997i 0.961911 0.273361i \(-0.0881355\pi\)
−0.717694 + 0.696359i \(0.754802\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.29558 + 10.9043i 0.983204 + 1.70296i 0.649659 + 0.760226i \(0.274912\pi\)
0.333545 + 0.942734i \(0.391755\pi\)
\(42\) 0 0
\(43\) −1.90827 + 3.30522i −0.291009 + 0.504042i −0.974049 0.226339i \(-0.927324\pi\)
0.683040 + 0.730381i \(0.260658\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.76564 −0.549276 −0.274638 0.961548i \(-0.588558\pi\)
−0.274638 + 0.961548i \(0.588558\pi\)
\(48\) 0 0
\(49\) 0.431647 + 6.98668i 0.0616639 + 0.998097i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.57860 + 9.66242i −0.766280 + 1.32724i 0.173287 + 0.984871i \(0.444561\pi\)
−0.939567 + 0.342364i \(0.888772\pi\)
\(54\) 0 0
\(55\) 1.62786 0.219500
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.42282 1.09656 0.548279 0.836296i \(-0.315283\pi\)
0.548279 + 0.836296i \(0.315283\pi\)
\(60\) 0 0
\(61\) −7.28625 −0.932908 −0.466454 0.884545i \(-0.654469\pi\)
−0.466454 + 0.884545i \(0.654469\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.75418 0.341614
\(66\) 0 0
\(67\) −2.57143 −0.314150 −0.157075 0.987587i \(-0.550206\pi\)
−0.157075 + 0.987587i \(0.550206\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.94304 −0.467953 −0.233977 0.972242i \(-0.575174\pi\)
−0.233977 + 0.972242i \(0.575174\pi\)
\(72\) 0 0
\(73\) −0.862216 + 1.49340i −0.100915 + 0.174790i −0.912062 0.410053i \(-0.865510\pi\)
0.811147 + 0.584842i \(0.198844\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.04794 8.70932i 0.233384 0.992519i
\(78\) 0 0
\(79\) 5.59960 0.630004 0.315002 0.949091i \(-0.397995\pi\)
0.315002 + 0.949091i \(0.397995\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.119494 + 0.206970i −0.0131162 + 0.0227179i −0.872509 0.488598i \(-0.837508\pi\)
0.859393 + 0.511316i \(0.170842\pi\)
\(84\) 0 0
\(85\) −1.32673 2.29796i −0.143904 0.249249i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.648116 1.12257i −0.0687002 0.118992i 0.829629 0.558315i \(-0.188552\pi\)
−0.898329 + 0.439323i \(0.855219\pi\)
\(90\) 0 0
\(91\) 3.46492 14.7353i 0.363222 1.54468i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.09907 0.215360
\(96\) 0 0
\(97\) −7.02669 + 12.1706i −0.713452 + 1.23574i 0.250101 + 0.968220i \(0.419536\pi\)
−0.963553 + 0.267516i \(0.913797\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.30322 + 9.18545i 0.527690 + 0.913986i 0.999479 + 0.0322748i \(0.0102752\pi\)
−0.471789 + 0.881712i \(0.656391\pi\)
\(102\) 0 0
\(103\) −0.0797078 + 0.138058i −0.00785385 + 0.0136033i −0.869926 0.493183i \(-0.835833\pi\)
0.862072 + 0.506786i \(0.169167\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.99030 6.91140i −0.385757 0.668150i 0.606117 0.795375i \(-0.292726\pi\)
−0.991874 + 0.127225i \(0.959393\pi\)
\(108\) 0 0
\(109\) −6.85612 + 11.8751i −0.656697 + 1.13743i 0.324769 + 0.945793i \(0.394714\pi\)
−0.981466 + 0.191639i \(0.938620\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.98656 15.5652i −0.845384 1.46425i −0.885287 0.465045i \(-0.846038\pi\)
0.0399031 0.999204i \(-0.487295\pi\)
\(114\) 0 0
\(115\) −0.872719 1.51159i −0.0813814 0.140957i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.9636 + 4.20726i −1.28004 + 0.385679i
\(120\) 0 0
\(121\) −0.217588 + 0.376874i −0.0197807 + 0.0342613i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.70232 −0.420588
\(126\) 0 0
\(127\) −18.9684 −1.68317 −0.841587 0.540121i \(-0.818378\pi\)
−0.841587 + 0.540121i \(0.818378\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.44116 4.22821i 0.213285 0.369420i −0.739456 0.673205i \(-0.764917\pi\)
0.952741 + 0.303785i \(0.0982504\pi\)
\(132\) 0 0
\(133\) 2.64075 11.2304i 0.228982 0.973797i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.23741 5.60736i −0.276591 0.479069i 0.693945 0.720028i \(-0.255871\pi\)
−0.970535 + 0.240959i \(0.922538\pi\)
\(138\) 0 0
\(139\) 11.3740 + 19.7003i 0.964727 + 1.67096i 0.710346 + 0.703852i \(0.248538\pi\)
0.254381 + 0.967104i \(0.418128\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.67362 + 16.7552i −0.808948 + 1.40114i
\(144\) 0 0
\(145\) −0.737155 1.27679i −0.0612174 0.106032i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.10230 + 12.3016i −0.581843 + 1.00778i 0.413418 + 0.910542i \(0.364335\pi\)
−0.995261 + 0.0972407i \(0.968998\pi\)
\(150\) 0 0
\(151\) 1.26129 + 2.18462i 0.102643 + 0.177782i 0.912773 0.408468i \(-0.133937\pi\)
−0.810130 + 0.586250i \(0.800604\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.25029 + 3.89761i −0.180747 + 0.313064i
\(156\) 0 0
\(157\) 17.4813 1.39516 0.697579 0.716508i \(-0.254261\pi\)
0.697579 + 0.716508i \(0.254261\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.18523 + 2.76753i −0.723897 + 0.218112i
\(162\) 0 0
\(163\) −0.881184 1.52625i −0.0690196 0.119546i 0.829450 0.558580i \(-0.188654\pi\)
−0.898470 + 0.439035i \(0.855320\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.57220 6.18723i −0.276425 0.478782i 0.694069 0.719909i \(-0.255816\pi\)
−0.970494 + 0.241127i \(0.922483\pi\)
\(168\) 0 0
\(169\) −9.86684 + 17.0899i −0.758988 + 1.31461i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.89382 −0.752213 −0.376107 0.926576i \(-0.622737\pi\)
−0.376107 + 0.926576i \(0.622737\pi\)
\(174\) 0 0
\(175\) −2.88773 + 12.2807i −0.218292 + 0.928334i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.02967 3.51550i 0.151705 0.262761i −0.780149 0.625593i \(-0.784857\pi\)
0.931854 + 0.362833i \(0.118190\pi\)
\(180\) 0 0
\(181\) 4.58084 0.340491 0.170246 0.985402i \(-0.445544\pi\)
0.170246 + 0.985402i \(0.445544\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.43022 −0.105152
\(186\) 0 0
\(187\) 18.6397 1.36307
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.1925 0.809860 0.404930 0.914348i \(-0.367296\pi\)
0.404930 + 0.914348i \(0.367296\pi\)
\(192\) 0 0
\(193\) 16.2936 1.17284 0.586419 0.810008i \(-0.300537\pi\)
0.586419 + 0.810008i \(0.300537\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.17438 0.226165 0.113082 0.993586i \(-0.463928\pi\)
0.113082 + 0.993586i \(0.463928\pi\)
\(198\) 0 0
\(199\) −1.44140 + 2.49658i −0.102178 + 0.176978i −0.912582 0.408894i \(-0.865915\pi\)
0.810404 + 0.585872i \(0.199248\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.75844 + 2.33763i −0.544536 + 0.164070i
\(204\) 0 0
\(205\) −6.06122 −0.423334
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.37264 + 12.7698i −0.509976 + 0.883305i
\(210\) 0 0
\(211\) 0.242718 + 0.420400i 0.0167094 + 0.0289415i 0.874259 0.485459i \(-0.161348\pi\)
−0.857550 + 0.514401i \(0.828014\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.918617 1.59109i −0.0626492 0.108512i
\(216\) 0 0
\(217\) 18.0219 + 16.9429i 1.22341 + 1.15016i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 31.5366 2.12138
\(222\) 0 0
\(223\) −2.14795 + 3.72037i −0.143838 + 0.249134i −0.928939 0.370234i \(-0.879278\pi\)
0.785101 + 0.619368i \(0.212611\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.69137 + 15.0539i 0.576866 + 0.999162i 0.995836 + 0.0911616i \(0.0290580\pi\)
−0.418970 + 0.908000i \(0.637609\pi\)
\(228\) 0 0
\(229\) −3.66563 + 6.34905i −0.242231 + 0.419557i −0.961350 0.275331i \(-0.911213\pi\)
0.719118 + 0.694888i \(0.244546\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.16624 + 3.75205i 0.141915 + 0.245805i 0.928218 0.372037i \(-0.121341\pi\)
−0.786302 + 0.617842i \(0.788007\pi\)
\(234\) 0 0
\(235\) 0.906366 1.56987i 0.0591248 0.102407i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.77960 + 3.08236i 0.115113 + 0.199381i 0.917825 0.396986i \(-0.129944\pi\)
−0.802712 + 0.596367i \(0.796610\pi\)
\(240\) 0 0
\(241\) −8.00925 13.8724i −0.515921 0.893602i −0.999829 0.0184829i \(-0.994116\pi\)
0.483908 0.875119i \(-0.339217\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.01659 1.50170i −0.192723 0.0959399i
\(246\) 0 0
\(247\) −12.4738 + 21.6053i −0.793689 + 1.37471i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.8007 −0.807972 −0.403986 0.914765i \(-0.632375\pi\)
−0.403986 + 0.914765i \(0.632375\pi\)
\(252\) 0 0
\(253\) 12.2612 0.770852
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.20769 14.2161i 0.511981 0.886778i −0.487922 0.872887i \(-0.662245\pi\)
0.999904 0.0138906i \(-0.00442165\pi\)
\(258\) 0 0
\(259\) −1.79930 + 7.65192i −0.111803 + 0.475467i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.8264 22.2160i −0.790910 1.36990i −0.925404 0.378982i \(-0.876274\pi\)
0.134494 0.990914i \(-0.457059\pi\)
\(264\) 0 0
\(265\) −2.68547 4.65136i −0.164967 0.285731i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.35397 + 9.27335i −0.326437 + 0.565406i −0.981802 0.189906i \(-0.939182\pi\)
0.655365 + 0.755313i \(0.272515\pi\)
\(270\) 0 0
\(271\) 12.7513 + 22.0859i 0.774587 + 1.34162i 0.935026 + 0.354578i \(0.115376\pi\)
−0.160439 + 0.987046i \(0.551291\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.06217 13.9641i 0.486167 0.842066i
\(276\) 0 0
\(277\) 6.39123 + 11.0699i 0.384012 + 0.665128i 0.991632 0.129100i \(-0.0412089\pi\)
−0.607620 + 0.794228i \(0.707876\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.4763 18.1454i 0.624961 1.08246i −0.363587 0.931560i \(-0.618448\pi\)
0.988548 0.150904i \(-0.0482185\pi\)
\(282\) 0 0
\(283\) −15.0617 −0.895325 −0.447663 0.894203i \(-0.647743\pi\)
−0.447663 + 0.894203i \(0.647743\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.62537 + 32.4286i −0.450112 + 1.91420i
\(288\) 0 0
\(289\) −6.69162 11.5902i −0.393625 0.681778i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.134459 0.232890i −0.00785519 0.0136056i 0.862071 0.506787i \(-0.169167\pi\)
−0.869926 + 0.493182i \(0.835834\pi\)
\(294\) 0 0
\(295\) −2.02732 + 3.51142i −0.118035 + 0.204443i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20.7447 1.19970
\(300\) 0 0
\(301\) −9.66830 + 2.91308i −0.557272 + 0.167907i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.75375 3.03759i 0.100420 0.173932i
\(306\) 0 0
\(307\) 5.03514 0.287371 0.143685 0.989623i \(-0.454105\pi\)
0.143685 + 0.989623i \(0.454105\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.47630 0.253828 0.126914 0.991914i \(-0.459493\pi\)
0.126914 + 0.991914i \(0.459493\pi\)
\(312\) 0 0
\(313\) 10.9779 0.620508 0.310254 0.950654i \(-0.399586\pi\)
0.310254 + 0.950654i \(0.399586\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −24.9652 −1.40218 −0.701092 0.713071i \(-0.747304\pi\)
−0.701092 + 0.713071i \(0.747304\pi\)
\(318\) 0 0
\(319\) 10.3566 0.579856
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0352 1.33736
\(324\) 0 0
\(325\) 13.6404 23.6259i 0.756635 1.31053i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.25883 6.82421i −0.400193 0.376231i
\(330\) 0 0
\(331\) −12.0241 −0.660905 −0.330453 0.943823i \(-0.607201\pi\)
−0.330453 + 0.943823i \(0.607201\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.618925 1.07201i 0.0338155 0.0585702i
\(336\) 0 0
\(337\) −14.1286 24.4715i −0.769636 1.33305i −0.937761 0.347282i \(-0.887105\pi\)
0.168125 0.985766i \(-0.446229\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.8076 27.3795i −0.856027 1.48268i
\(342\) 0 0
\(343\) −11.8294 + 14.2501i −0.638728 + 0.769433i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.6059 1.05250 0.526249 0.850331i \(-0.323598\pi\)
0.526249 + 0.850331i \(0.323598\pi\)
\(348\) 0 0
\(349\) −8.22904 + 14.2531i −0.440490 + 0.762952i −0.997726 0.0674029i \(-0.978529\pi\)
0.557236 + 0.830354i \(0.311862\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.6854 23.7039i −0.728402 1.26163i −0.957558 0.288240i \(-0.906930\pi\)
0.229156 0.973390i \(-0.426403\pi\)
\(354\) 0 0
\(355\) 0.949065 1.64383i 0.0503711 0.0872453i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.88714 + 13.6609i 0.416267 + 0.720996i 0.995561 0.0941231i \(-0.0300047\pi\)
−0.579293 + 0.815119i \(0.696671\pi\)
\(360\) 0 0
\(361\) −0.00677168 + 0.0117289i −0.000356404 + 0.000617310i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.415060 0.718905i −0.0217252 0.0376292i
\(366\) 0 0
\(367\) 9.40684 + 16.2931i 0.491033 + 0.850494i 0.999947 0.0103233i \(-0.00328606\pi\)
−0.508914 + 0.860818i \(0.669953\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −28.2641 + 8.51603i −1.46740 + 0.442130i
\(372\) 0 0
\(373\) 8.78687 15.2193i 0.454967 0.788026i −0.543719 0.839267i \(-0.682984\pi\)
0.998686 + 0.0512414i \(0.0163178\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.5223 0.902446
\(378\) 0 0
\(379\) −34.4618 −1.77018 −0.885091 0.465419i \(-0.845904\pi\)
−0.885091 + 0.465419i \(0.845904\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.3705 19.6943i 0.581005 1.00633i −0.414356 0.910115i \(-0.635993\pi\)
0.995361 0.0962145i \(-0.0306735\pi\)
\(384\) 0 0
\(385\) 3.13793 + 2.95005i 0.159924 + 0.150348i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.88189 + 13.6518i 0.399628 + 0.692175i 0.993680 0.112251i \(-0.0358061\pi\)
−0.594052 + 0.804426i \(0.702473\pi\)
\(390\) 0 0
\(391\) −9.99303 17.3084i −0.505369 0.875325i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.34779 + 2.33444i −0.0678145 + 0.117458i
\(396\) 0 0
\(397\) −5.39875 9.35091i −0.270955 0.469308i 0.698151 0.715950i \(-0.254006\pi\)
−0.969107 + 0.246642i \(0.920673\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.16473 10.6776i 0.307852 0.533215i −0.670040 0.742325i \(-0.733723\pi\)
0.977892 + 0.209110i \(0.0670566\pi\)
\(402\) 0 0
\(403\) −26.7449 46.3235i −1.33226 2.30754i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.02342 8.70082i 0.249002 0.431284i
\(408\) 0 0
\(409\) 18.6354 0.921462 0.460731 0.887540i \(-0.347587\pi\)
0.460731 + 0.887540i \(0.347587\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.2362 + 15.2641i 0.798932 + 0.751096i
\(414\) 0 0
\(415\) −0.0575230 0.0996328i −0.00282369 0.00489078i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.90976 10.2360i −0.288711 0.500062i 0.684791 0.728739i \(-0.259893\pi\)
−0.973502 + 0.228677i \(0.926560\pi\)
\(420\) 0 0
\(421\) 4.81800 8.34503i 0.234815 0.406712i −0.724404 0.689376i \(-0.757885\pi\)
0.959219 + 0.282664i \(0.0912182\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −26.2832 −1.27492
\(426\) 0 0
\(427\) −14.0453 13.2044i −0.679700 0.639003i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.2913 + 31.6815i −0.881062 + 1.52604i −0.0309004 + 0.999522i \(0.509837\pi\)
−0.850162 + 0.526522i \(0.823496\pi\)
\(432\) 0 0
\(433\) −7.69388 −0.369744 −0.184872 0.982763i \(-0.559187\pi\)
−0.184872 + 0.982763i \(0.559187\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.8104 0.756312
\(438\) 0 0
\(439\) 20.5434 0.980482 0.490241 0.871587i \(-0.336909\pi\)
0.490241 + 0.871587i \(0.336909\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −33.6802 −1.60020 −0.800098 0.599870i \(-0.795219\pi\)
−0.800098 + 0.599870i \(0.795219\pi\)
\(444\) 0 0
\(445\) 0.623990 0.0295799
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.5141 1.06250 0.531252 0.847214i \(-0.321722\pi\)
0.531252 + 0.847214i \(0.321722\pi\)
\(450\) 0 0
\(451\) 21.2891 36.8738i 1.00246 1.73632i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.30908 + 4.99120i 0.248894 + 0.233991i
\(456\) 0 0
\(457\) −23.7117 −1.10919 −0.554594 0.832121i \(-0.687126\pi\)
−0.554594 + 0.832121i \(0.687126\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.57340 9.65342i 0.259579 0.449605i −0.706550 0.707663i \(-0.749749\pi\)
0.966129 + 0.258059i \(0.0830828\pi\)
\(462\) 0 0
\(463\) −10.3208 17.8761i −0.479647 0.830773i 0.520080 0.854117i \(-0.325902\pi\)
−0.999727 + 0.0233441i \(0.992569\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.68477 15.0425i −0.401883 0.696082i 0.592070 0.805887i \(-0.298311\pi\)
−0.993953 + 0.109804i \(0.964978\pi\)
\(468\) 0 0
\(469\) −4.95680 4.66001i −0.228884 0.215179i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.9060 0.593419
\(474\) 0 0
\(475\) 10.3959 18.0062i 0.476997 0.826182i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.04517 + 3.54233i 0.0934461 + 0.161853i 0.908959 0.416886i \(-0.136878\pi\)
−0.815513 + 0.578739i \(0.803545\pi\)
\(480\) 0 0
\(481\) 8.49915 14.7210i 0.387528 0.671218i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.38256 5.85876i −0.153594 0.266033i
\(486\) 0 0
\(487\) 0.843065 1.46023i 0.0382029 0.0661694i −0.846292 0.532720i \(-0.821170\pi\)
0.884495 + 0.466550i \(0.154503\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.85070 + 11.8658i 0.309168 + 0.535494i 0.978181 0.207757i \(-0.0666162\pi\)
−0.669013 + 0.743251i \(0.733283\pi\)
\(492\) 0 0
\(493\) −8.44076 14.6198i −0.380153 0.658444i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.60079 7.14570i −0.340942 0.320528i
\(498\) 0 0
\(499\) −3.27827 + 5.67813i −0.146756 + 0.254188i −0.930027 0.367492i \(-0.880216\pi\)
0.783271 + 0.621680i \(0.213550\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 26.8584 1.19756 0.598779 0.800914i \(-0.295653\pi\)
0.598779 + 0.800914i \(0.295653\pi\)
\(504\) 0 0
\(505\) −5.10580 −0.227205
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −19.8669 + 34.4104i −0.880584 + 1.52522i −0.0298904 + 0.999553i \(0.509516\pi\)
−0.850693 + 0.525662i \(0.823817\pi\)
\(510\) 0 0
\(511\) −4.36844 + 1.31622i −0.193248 + 0.0582261i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.0383703 0.0664593i −0.00169080 0.00292855i
\(516\) 0 0
\(517\) 6.36694 + 11.0279i 0.280018 + 0.485005i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.7585 + 20.3663i −0.515148 + 0.892262i 0.484698 + 0.874682i \(0.338930\pi\)
−0.999845 + 0.0175802i \(0.994404\pi\)
\(522\) 0 0
\(523\) 10.9289 + 18.9294i 0.477887 + 0.827725i 0.999679 0.0253481i \(-0.00806942\pi\)
−0.521791 + 0.853073i \(0.674736\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.7668 + 44.6294i −1.12242 + 1.94409i
\(528\) 0 0
\(529\) 4.92660 + 8.53312i 0.214200 + 0.371005i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 36.0191 62.3869i 1.56016 2.70228i
\(534\) 0 0
\(535\) 3.84175 0.166094
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 19.7310 13.0772i 0.849874 0.563273i
\(540\) 0 0
\(541\) 14.0063 + 24.2596i 0.602178 + 1.04300i 0.992491 + 0.122320i \(0.0390334\pi\)
−0.390313 + 0.920682i \(0.627633\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.30045 5.71654i −0.141376 0.244870i
\(546\) 0 0
\(547\) 2.02714 3.51112i 0.0866744 0.150124i −0.819429 0.573181i \(-0.805709\pi\)
0.906103 + 0.423056i \(0.139043\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.3544 0.568919
\(552\) 0 0
\(553\) 10.7941 + 10.1478i 0.459010 + 0.431527i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.926620 1.60495i 0.0392621 0.0680040i −0.845727 0.533616i \(-0.820833\pi\)
0.884989 + 0.465612i \(0.154166\pi\)
\(558\) 0 0
\(559\) 21.8357 0.923553
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 44.4662 1.87403 0.937013 0.349295i \(-0.113579\pi\)
0.937013 + 0.349295i \(0.113579\pi\)
\(564\) 0 0
\(565\) 8.65202 0.363993
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.2623 −0.639830 −0.319915 0.947446i \(-0.603654\pi\)
−0.319915 + 0.947446i \(0.603654\pi\)
\(570\) 0 0
\(571\) 25.5267 1.06826 0.534130 0.845402i \(-0.320639\pi\)
0.534130 + 0.845402i \(0.320639\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −17.2890 −0.721002
\(576\) 0 0
\(577\) −3.26981 + 5.66348i −0.136124 + 0.235774i −0.926026 0.377459i \(-0.876798\pi\)
0.789902 + 0.613233i \(0.210131\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.605420 + 0.182414i −0.0251171 + 0.00756783i
\(582\) 0 0
\(583\) 37.7291 1.56258
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.2055 26.3366i 0.627597 1.08703i −0.360436 0.932784i \(-0.617372\pi\)
0.988033 0.154245i \(-0.0492947\pi\)
\(588\) 0 0
\(589\) −20.3833 35.3049i −0.839880 1.45471i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.3291 + 36.9432i 0.875883 + 1.51707i 0.855819 + 0.517275i \(0.173053\pi\)
0.0200633 + 0.999799i \(0.493613\pi\)
\(594\) 0 0
\(595\) 1.60697 6.83399i 0.0658792 0.280166i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −44.5574 −1.82057 −0.910284 0.413985i \(-0.864137\pi\)
−0.910284 + 0.413985i \(0.864137\pi\)
\(600\) 0 0
\(601\) 14.1961 24.5884i 0.579071 1.00298i −0.416515 0.909129i \(-0.636749\pi\)
0.995586 0.0938518i \(-0.0299180\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.104744 0.181422i −0.00425845 0.00737586i
\(606\) 0 0
\(607\) 7.01391 12.1484i 0.284686 0.493090i −0.687847 0.725856i \(-0.741444\pi\)
0.972533 + 0.232765i \(0.0747774\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.7723 + 18.6581i 0.435799 + 0.754826i
\(612\) 0 0
\(613\) −9.97062 + 17.2696i −0.402709 + 0.697513i −0.994052 0.108907i \(-0.965265\pi\)
0.591342 + 0.806421i \(0.298598\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.51584 + 2.62551i 0.0610254 + 0.105699i 0.894924 0.446219i \(-0.147230\pi\)
−0.833899 + 0.551918i \(0.813896\pi\)
\(618\) 0 0
\(619\) 1.27715 + 2.21209i 0.0513331 + 0.0889116i 0.890550 0.454885i \(-0.150320\pi\)
−0.839217 + 0.543797i \(0.816986\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.785016 3.33846i 0.0314510 0.133752i
\(624\) 0 0
\(625\) −10.7888 + 18.6868i −0.431554 + 0.747473i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16.3766 −0.652980
\(630\) 0 0
\(631\) −37.1162 −1.47757 −0.738786 0.673941i \(-0.764600\pi\)
−0.738786 + 0.673941i \(0.764600\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.56557 7.90780i 0.181179 0.313812i
\(636\) 0 0
\(637\) 33.3830 22.1253i 1.32268 0.876636i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.5484 + 18.2704i 0.416638 + 0.721638i 0.995599 0.0937176i \(-0.0298751\pi\)
−0.578961 + 0.815355i \(0.696542\pi\)
\(642\) 0 0
\(643\) −9.31948 16.1418i −0.367524 0.636571i 0.621654 0.783292i \(-0.286461\pi\)
−0.989178 + 0.146722i \(0.953128\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.78509 8.28801i 0.188121 0.325835i −0.756503 0.653991i \(-0.773094\pi\)
0.944624 + 0.328155i \(0.106427\pi\)
\(648\) 0 0
\(649\) −14.2413 24.6666i −0.559019 0.968249i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16.4280 + 28.4541i −0.642877 + 1.11350i 0.341911 + 0.939732i \(0.388926\pi\)
−0.984788 + 0.173763i \(0.944407\pi\)
\(654\) 0 0
\(655\) 1.17514 + 2.03541i 0.0459166 + 0.0795299i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.8011 42.9568i 0.966114 1.67336i 0.259521 0.965738i \(-0.416435\pi\)
0.706593 0.707620i \(-0.250231\pi\)
\(660\) 0 0
\(661\) −3.31789 −0.129051 −0.0645255 0.997916i \(-0.520553\pi\)
−0.0645255 + 0.997916i \(0.520553\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.04626 + 3.80399i 0.156907 + 0.147512i
\(666\) 0 0
\(667\) −5.55232 9.61690i −0.214987 0.372368i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.3196 + 21.3381i 0.475591 + 0.823748i
\(672\) 0 0
\(673\) 21.8005 37.7597i 0.840349 1.45553i −0.0492503 0.998786i \(-0.515683\pi\)
0.889600 0.456741i \(-0.150983\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.2808 0.702587 0.351294 0.936265i \(-0.385742\pi\)
0.351294 + 0.936265i \(0.385742\pi\)
\(678\) 0 0
\(679\) −35.6009 + 10.7266i −1.36624 + 0.411650i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.5380 39.0369i 0.862391 1.49371i −0.00722317 0.999974i \(-0.502299\pi\)
0.869614 0.493732i \(-0.164367\pi\)
\(684\) 0 0
\(685\) 3.11689 0.119090
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 63.8341 2.43189
\(690\) 0 0
\(691\) −41.7955 −1.58998 −0.794988 0.606625i \(-0.792523\pi\)
−0.794988 + 0.606625i \(0.792523\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.9506 −0.415378
\(696\) 0 0
\(697\) −69.4037 −2.62885
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.3967 −0.732604 −0.366302 0.930496i \(-0.619376\pi\)
−0.366302 + 0.930496i \(0.619376\pi\)
\(702\) 0 0
\(703\) 6.47753 11.2194i 0.244305 0.423148i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.42340 + 27.3170i −0.241577 + 1.02736i
\(708\) 0 0
\(709\) −17.2308 −0.647118 −0.323559 0.946208i \(-0.604879\pi\)
−0.323559 + 0.946208i \(0.604879\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.9494 + 29.3572i −0.634759 + 1.09943i
\(714\) 0 0
\(715\) −4.65675 8.06573i −0.174153 0.301641i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.08444 + 8.80650i 0.189617 + 0.328427i 0.945123 0.326715i \(-0.105942\pi\)
−0.755505 + 0.655143i \(0.772609\pi\)
\(720\) 0 0
\(721\) −0.403841 + 0.121678i −0.0150398 + 0.00453153i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −14.6034 −0.542358
\(726\) 0 0
\(727\) 0.0914356 0.158371i 0.00339116 0.00587366i −0.864325 0.502934i \(-0.832254\pi\)
0.867716 + 0.497060i \(0.165587\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.5186 18.2187i −0.389044 0.673844i
\(732\) 0 0
\(733\) −20.9672 + 36.3162i −0.774440 + 1.34137i 0.160669 + 0.987008i \(0.448635\pi\)
−0.935109 + 0.354361i \(0.884698\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.34776 + 7.53054i 0.160152 + 0.277391i
\(738\) 0 0
\(739\) 11.8013 20.4404i 0.434116 0.751911i −0.563107 0.826384i \(-0.690394\pi\)
0.997223 + 0.0744729i \(0.0237274\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.1821 19.3680i −0.410233 0.710544i 0.584682 0.811263i \(-0.301219\pi\)
−0.994915 + 0.100718i \(0.967886\pi\)
\(744\) 0 0
\(745\) −3.41896 5.92181i −0.125261 0.216958i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.83315 20.5541i 0.176600 0.751029i
\(750\) 0 0
\(751\) 15.5231 26.8868i 0.566445 0.981112i −0.430468 0.902606i \(-0.641652\pi\)
0.996914 0.0785064i \(-0.0250151\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.21434 −0.0441943
\(756\) 0 0
\(757\) −44.0639 −1.60153 −0.800764 0.598980i \(-0.795573\pi\)
−0.800764 + 0.598980i \(0.795573\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.87470 4.97913i 0.104208 0.180493i −0.809206 0.587524i \(-0.800103\pi\)
0.913414 + 0.407031i \(0.133436\pi\)
\(762\) 0 0
\(763\) −34.7367 + 10.4662i −1.25755 + 0.378903i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.0949 41.7336i −0.870016 1.50691i
\(768\) 0 0
\(769\) −7.48401 12.9627i −0.269880 0.467446i 0.698950 0.715170i \(-0.253651\pi\)
−0.968831 + 0.247724i \(0.920317\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.0605 17.4253i 0.361850 0.626743i −0.626415 0.779490i \(-0.715479\pi\)
0.988265 + 0.152747i \(0.0488119\pi\)
\(774\) 0 0
\(775\) 22.2897 + 38.6069i 0.800669 + 1.38680i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.4516 47.5475i 0.983555 1.70357i
\(780\) 0 0
\(781\) 6.66688 + 11.5474i 0.238560 + 0.413198i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.20763 + 7.28783i −0.150177 + 0.260114i
\(786\) 0 0
\(787\) 24.1145 0.859588 0.429794 0.902927i \(-0.358586\pi\)
0.429794 + 0.902927i \(0.358586\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.8848 46.2899i 0.387017 1.64588i
\(792\) 0 0
\(793\) 20.8435 + 36.1021i 0.740175 + 1.28202i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.54611 + 2.67794i 0.0547661 + 0.0948576i 0.892109 0.451821i \(-0.149225\pi\)
−0.837343 + 0.546678i \(0.815892\pi\)