Properties

Label 3024.2.q.k.2881.2
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.2
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.k.2305.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.71796 + 2.97559i) q^{5} +(0.727932 - 2.54364i) q^{7} +O(q^{10})\) \(q+(-1.71796 + 2.97559i) q^{5} +(0.727932 - 2.54364i) q^{7} +(-2.20469 - 3.81863i) q^{11} +(1.49401 + 2.58771i) q^{13} +(-0.542270 + 0.939239i) q^{17} +(3.74273 + 6.48261i) q^{19} +(2.16279 - 3.74606i) q^{23} +(-3.40276 - 5.89375i) q^{25} +(-1.68485 + 2.91825i) q^{29} -9.37469 q^{31} +(6.31828 + 6.53590i) q^{35} +(-2.50767 - 4.34341i) q^{37} +(1.20160 + 2.08122i) q^{41} +(-3.31412 + 5.74023i) q^{43} +3.00831 q^{47} +(-5.94023 - 3.70320i) q^{49} +(0.530699 - 0.919198i) q^{53} +15.1502 q^{55} +12.4094 q^{59} -5.42668 q^{61} -10.2666 q^{65} -3.33998 q^{67} -12.9064 q^{71} +(-8.21382 + 14.2267i) q^{73} +(-11.3181 + 2.82823i) q^{77} +2.35031 q^{79} +(-1.60602 + 2.78171i) q^{83} +(-1.86319 - 3.22715i) q^{85} +(-5.67524 - 9.82981i) q^{89} +(7.66974 - 1.91656i) q^{91} -25.7194 q^{95} +(-6.40321 + 11.0907i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.71796 + 2.97559i −0.768294 + 1.33072i 0.170193 + 0.985411i \(0.445561\pi\)
−0.938487 + 0.345314i \(0.887773\pi\)
\(6\) 0 0
\(7\) 0.727932 2.54364i 0.275132 0.961406i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.20469 3.81863i −0.664739 1.15136i −0.979356 0.202143i \(-0.935210\pi\)
0.314618 0.949219i \(-0.398124\pi\)
\(12\) 0 0
\(13\) 1.49401 + 2.58771i 0.414365 + 0.717701i 0.995362 0.0962048i \(-0.0306704\pi\)
−0.580997 + 0.813906i \(0.697337\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.542270 + 0.939239i −0.131520 + 0.227799i −0.924263 0.381757i \(-0.875319\pi\)
0.792743 + 0.609556i \(0.208652\pi\)
\(18\) 0 0
\(19\) 3.74273 + 6.48261i 0.858642 + 1.48721i 0.873225 + 0.487318i \(0.162025\pi\)
−0.0145824 + 0.999894i \(0.504642\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.16279 3.74606i 0.450972 0.781107i −0.547474 0.836823i \(-0.684411\pi\)
0.998447 + 0.0557153i \(0.0177439\pi\)
\(24\) 0 0
\(25\) −3.40276 5.89375i −0.680552 1.17875i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.68485 + 2.91825i −0.312870 + 0.541906i −0.978982 0.203945i \(-0.934624\pi\)
0.666113 + 0.745851i \(0.267957\pi\)
\(30\) 0 0
\(31\) −9.37469 −1.68374 −0.841872 0.539678i \(-0.818546\pi\)
−0.841872 + 0.539678i \(0.818546\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.31828 + 6.53590i 1.06798 + 1.10477i
\(36\) 0 0
\(37\) −2.50767 4.34341i −0.412258 0.714052i 0.582878 0.812559i \(-0.301926\pi\)
−0.995136 + 0.0985079i \(0.968593\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.20160 + 2.08122i 0.187658 + 0.325033i 0.944469 0.328601i \(-0.106577\pi\)
−0.756811 + 0.653634i \(0.773244\pi\)
\(42\) 0 0
\(43\) −3.31412 + 5.74023i −0.505399 + 0.875377i 0.494581 + 0.869131i \(0.335321\pi\)
−0.999980 + 0.00624563i \(0.998012\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00831 0.438807 0.219403 0.975634i \(-0.429589\pi\)
0.219403 + 0.975634i \(0.429589\pi\)
\(48\) 0 0
\(49\) −5.94023 3.70320i −0.848604 0.529028i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.530699 0.919198i 0.0728971 0.126262i −0.827273 0.561801i \(-0.810109\pi\)
0.900170 + 0.435539i \(0.143442\pi\)
\(54\) 0 0
\(55\) 15.1502 2.04286
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.4094 1.61557 0.807783 0.589480i \(-0.200668\pi\)
0.807783 + 0.589480i \(0.200668\pi\)
\(60\) 0 0
\(61\) −5.42668 −0.694816 −0.347408 0.937714i \(-0.612938\pi\)
−0.347408 + 0.937714i \(0.612938\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.2666 −1.27342
\(66\) 0 0
\(67\) −3.33998 −0.408043 −0.204022 0.978966i \(-0.565401\pi\)
−0.204022 + 0.978966i \(0.565401\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.9064 −1.53171 −0.765857 0.643011i \(-0.777685\pi\)
−0.765857 + 0.643011i \(0.777685\pi\)
\(72\) 0 0
\(73\) −8.21382 + 14.2267i −0.961355 + 1.66511i −0.242249 + 0.970214i \(0.577885\pi\)
−0.719106 + 0.694901i \(0.755448\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −11.3181 + 2.82823i −1.28982 + 0.322307i
\(78\) 0 0
\(79\) 2.35031 0.264431 0.132216 0.991221i \(-0.457791\pi\)
0.132216 + 0.991221i \(0.457791\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.60602 + 2.78171i −0.176283 + 0.305332i −0.940605 0.339504i \(-0.889741\pi\)
0.764321 + 0.644836i \(0.223074\pi\)
\(84\) 0 0
\(85\) −1.86319 3.22715i −0.202092 0.350033i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.67524 9.82981i −0.601575 1.04196i −0.992583 0.121570i \(-0.961207\pi\)
0.391008 0.920387i \(-0.372126\pi\)
\(90\) 0 0
\(91\) 7.66974 1.91656i 0.804008 0.200910i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −25.7194 −2.63876
\(96\) 0 0
\(97\) −6.40321 + 11.0907i −0.650148 + 1.12609i 0.332939 + 0.942948i \(0.391960\pi\)
−0.983087 + 0.183140i \(0.941374\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.388110 0.672227i −0.0386184 0.0668891i 0.846070 0.533072i \(-0.178962\pi\)
−0.884689 + 0.466182i \(0.845629\pi\)
\(102\) 0 0
\(103\) 1.14131 1.97681i 0.112457 0.194781i −0.804304 0.594219i \(-0.797461\pi\)
0.916760 + 0.399438i \(0.130795\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.27468 3.93986i −0.219901 0.380880i 0.734876 0.678201i \(-0.237240\pi\)
−0.954778 + 0.297321i \(0.903907\pi\)
\(108\) 0 0
\(109\) 2.36710 4.09994i 0.226727 0.392703i −0.730109 0.683331i \(-0.760531\pi\)
0.956836 + 0.290627i \(0.0938640\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.175367 0.303745i −0.0164972 0.0285740i 0.857659 0.514219i \(-0.171918\pi\)
−0.874156 + 0.485645i \(0.838585\pi\)
\(114\) 0 0
\(115\) 7.43116 + 12.8711i 0.692959 + 1.20024i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.99435 + 2.06304i 0.182822 + 0.189119i
\(120\) 0 0
\(121\) −4.22130 + 7.31151i −0.383755 + 0.664683i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.20360 0.554867
\(126\) 0 0
\(127\) −12.4175 −1.10187 −0.550935 0.834548i \(-0.685729\pi\)
−0.550935 + 0.834548i \(0.685729\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.87152 + 13.6339i −0.687738 + 1.19120i 0.284830 + 0.958578i \(0.408063\pi\)
−0.972568 + 0.232619i \(0.925270\pi\)
\(132\) 0 0
\(133\) 19.2139 4.80128i 1.66606 0.416324i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.11510 3.66346i −0.180705 0.312990i 0.761416 0.648264i \(-0.224505\pi\)
−0.942121 + 0.335274i \(0.891171\pi\)
\(138\) 0 0
\(139\) −9.80367 16.9805i −0.831537 1.44026i −0.896819 0.442397i \(-0.854128\pi\)
0.0652824 0.997867i \(-0.479205\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.58767 11.4102i 0.550889 0.954167i
\(144\) 0 0
\(145\) −5.78902 10.0269i −0.480752 0.832686i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.86326 + 8.42341i −0.398414 + 0.690073i −0.993530 0.113567i \(-0.963772\pi\)
0.595117 + 0.803639i \(0.297106\pi\)
\(150\) 0 0
\(151\) −4.91074 8.50565i −0.399630 0.692180i 0.594050 0.804428i \(-0.297528\pi\)
−0.993680 + 0.112248i \(0.964195\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.1053 27.8952i 1.29361 2.24060i
\(156\) 0 0
\(157\) −12.0408 −0.960962 −0.480481 0.877005i \(-0.659538\pi\)
−0.480481 + 0.877005i \(0.659538\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.95427 8.22824i −0.626884 0.648476i
\(162\) 0 0
\(163\) −0.885601 1.53391i −0.0693656 0.120145i 0.829257 0.558868i \(-0.188764\pi\)
−0.898622 + 0.438723i \(0.855431\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.86350 13.6200i −0.608496 1.05395i −0.991489 0.130194i \(-0.958440\pi\)
0.382993 0.923751i \(-0.374893\pi\)
\(168\) 0 0
\(169\) 2.03584 3.52618i 0.156603 0.271245i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.8063 −1.42981 −0.714907 0.699220i \(-0.753531\pi\)
−0.714907 + 0.699220i \(0.753531\pi\)
\(174\) 0 0
\(175\) −17.4686 + 4.36515i −1.32050 + 0.329974i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.34201 5.78853i 0.249794 0.432655i −0.713675 0.700477i \(-0.752971\pi\)
0.963468 + 0.267822i \(0.0863039\pi\)
\(180\) 0 0
\(181\) 4.73726 0.352117 0.176059 0.984380i \(-0.443665\pi\)
0.176059 + 0.984380i \(0.443665\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 17.2323 1.26694
\(186\) 0 0
\(187\) 4.78214 0.349705
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −23.0693 −1.66924 −0.834618 0.550829i \(-0.814312\pi\)
−0.834618 + 0.550829i \(0.814312\pi\)
\(192\) 0 0
\(193\) 18.3070 1.31777 0.658885 0.752244i \(-0.271028\pi\)
0.658885 + 0.752244i \(0.271028\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.5866 −1.03925 −0.519625 0.854395i \(-0.673928\pi\)
−0.519625 + 0.854395i \(0.673928\pi\)
\(198\) 0 0
\(199\) 0.912102 1.57981i 0.0646572 0.111990i −0.831885 0.554949i \(-0.812738\pi\)
0.896542 + 0.442959i \(0.146071\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.19653 + 6.40996i 0.434911 + 0.449891i
\(204\) 0 0
\(205\) −8.25716 −0.576705
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.5031 28.5843i 1.14155 1.97721i
\(210\) 0 0
\(211\) 2.77359 + 4.80400i 0.190942 + 0.330721i 0.945563 0.325440i \(-0.105512\pi\)
−0.754621 + 0.656161i \(0.772179\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.3870 19.7229i −0.776590 1.34509i
\(216\) 0 0
\(217\) −6.82413 + 23.8458i −0.463252 + 1.61876i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.24064 −0.217989
\(222\) 0 0
\(223\) −6.01726 + 10.4222i −0.402946 + 0.697922i −0.994080 0.108651i \(-0.965347\pi\)
0.591134 + 0.806573i \(0.298680\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.57834 + 11.3940i 0.436620 + 0.756248i 0.997426 0.0716991i \(-0.0228421\pi\)
−0.560806 + 0.827947i \(0.689509\pi\)
\(228\) 0 0
\(229\) −6.24159 + 10.8108i −0.412456 + 0.714395i −0.995158 0.0982915i \(-0.968662\pi\)
0.582702 + 0.812686i \(0.301996\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.01687 + 3.49332i 0.132130 + 0.228855i 0.924497 0.381189i \(-0.124485\pi\)
−0.792368 + 0.610044i \(0.791152\pi\)
\(234\) 0 0
\(235\) −5.16814 + 8.95149i −0.337133 + 0.583931i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.8679 + 24.0200i 0.897043 + 1.55372i 0.831256 + 0.555890i \(0.187623\pi\)
0.0657873 + 0.997834i \(0.479044\pi\)
\(240\) 0 0
\(241\) −11.9567 20.7096i −0.770199 1.33402i −0.937453 0.348111i \(-0.886823\pi\)
0.167254 0.985914i \(-0.446510\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 21.2243 11.3138i 1.35597 0.722809i
\(246\) 0 0
\(247\) −11.1834 + 19.3702i −0.711582 + 1.23250i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.33510 −0.210509 −0.105255 0.994445i \(-0.533566\pi\)
−0.105255 + 0.994445i \(0.533566\pi\)
\(252\) 0 0
\(253\) −19.0731 −1.19912
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.9345 + 18.9392i −0.682078 + 1.18139i 0.292268 + 0.956336i \(0.405590\pi\)
−0.974346 + 0.225057i \(0.927743\pi\)
\(258\) 0 0
\(259\) −12.8735 + 3.21690i −0.799919 + 0.199889i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.75522 4.77218i −0.169894 0.294265i 0.768488 0.639864i \(-0.221009\pi\)
−0.938382 + 0.345599i \(0.887676\pi\)
\(264\) 0 0
\(265\) 1.82344 + 3.15829i 0.112013 + 0.194012i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.37393 + 5.84382i −0.205712 + 0.356304i −0.950359 0.311154i \(-0.899284\pi\)
0.744647 + 0.667458i \(0.232618\pi\)
\(270\) 0 0
\(271\) −6.21944 10.7724i −0.377804 0.654376i 0.612938 0.790131i \(-0.289987\pi\)
−0.990742 + 0.135755i \(0.956654\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0040 + 25.9878i −0.904778 + 1.56712i
\(276\) 0 0
\(277\) 4.85945 + 8.41681i 0.291976 + 0.505717i 0.974277 0.225354i \(-0.0723539\pi\)
−0.682301 + 0.731071i \(0.739021\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.66772 16.7450i 0.576728 0.998922i −0.419124 0.907929i \(-0.637663\pi\)
0.995852 0.0909928i \(-0.0290040\pi\)
\(282\) 0 0
\(283\) −8.30900 −0.493919 −0.246959 0.969026i \(-0.579431\pi\)
−0.246959 + 0.969026i \(0.579431\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.16857 1.54144i 0.364119 0.0909882i
\(288\) 0 0
\(289\) 7.91189 + 13.7038i 0.465405 + 0.806105i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.97318 + 6.88175i 0.232116 + 0.402036i 0.958430 0.285326i \(-0.0921019\pi\)
−0.726315 + 0.687362i \(0.758769\pi\)
\(294\) 0 0
\(295\) −21.3188 + 36.9253i −1.24123 + 2.14987i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.9249 0.747469
\(300\) 0 0
\(301\) 12.1886 + 12.6084i 0.702541 + 0.726739i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.32281 16.1476i 0.533823 0.924608i
\(306\) 0 0
\(307\) 26.9180 1.53629 0.768145 0.640276i \(-0.221180\pi\)
0.768145 + 0.640276i \(0.221180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.34917 0.530143 0.265071 0.964229i \(-0.414604\pi\)
0.265071 + 0.964229i \(0.414604\pi\)
\(312\) 0 0
\(313\) 15.8380 0.895219 0.447610 0.894229i \(-0.352275\pi\)
0.447610 + 0.894229i \(0.352275\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.4591 1.59843 0.799213 0.601049i \(-0.205250\pi\)
0.799213 + 0.601049i \(0.205250\pi\)
\(318\) 0 0
\(319\) 14.8583 0.831906
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.11829 −0.451714
\(324\) 0 0
\(325\) 10.1675 17.6107i 0.563994 0.976865i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.18984 7.65205i 0.120730 0.421871i
\(330\) 0 0
\(331\) 19.5904 1.07679 0.538393 0.842694i \(-0.319032\pi\)
0.538393 + 0.842694i \(0.319032\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.73794 9.93841i 0.313497 0.542993i
\(336\) 0 0
\(337\) 8.73059 + 15.1218i 0.475586 + 0.823739i 0.999609 0.0279654i \(-0.00890283\pi\)
−0.524023 + 0.851704i \(0.675569\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.6683 + 35.7985i 1.11925 + 1.93860i
\(342\) 0 0
\(343\) −13.7437 + 12.4141i −0.742090 + 0.670301i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.4502 −1.04414 −0.522070 0.852903i \(-0.674840\pi\)
−0.522070 + 0.852903i \(0.674840\pi\)
\(348\) 0 0
\(349\) 6.91419 11.9757i 0.370108 0.641046i −0.619474 0.785018i \(-0.712654\pi\)
0.989582 + 0.143971i \(0.0459872\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.92295 + 10.2588i 0.315247 + 0.546023i 0.979490 0.201493i \(-0.0645794\pi\)
−0.664243 + 0.747517i \(0.731246\pi\)
\(354\) 0 0
\(355\) 22.1727 38.4043i 1.17681 2.03829i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.628489 1.08858i −0.0331704 0.0574528i 0.848964 0.528451i \(-0.177227\pi\)
−0.882134 + 0.470998i \(0.843894\pi\)
\(360\) 0 0
\(361\) −18.5161 + 32.0709i −0.974533 + 1.68794i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −28.2220 48.8819i −1.47721 2.55860i
\(366\) 0 0
\(367\) −7.61928 13.1970i −0.397723 0.688877i 0.595721 0.803191i \(-0.296866\pi\)
−0.993445 + 0.114314i \(0.963533\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.95180 2.01902i −0.101332 0.104822i
\(372\) 0 0
\(373\) −8.66756 + 15.0127i −0.448789 + 0.777326i −0.998308 0.0581556i \(-0.981478\pi\)
0.549518 + 0.835482i \(0.314811\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.0688 −0.518569
\(378\) 0 0
\(379\) −15.6319 −0.802955 −0.401478 0.915869i \(-0.631503\pi\)
−0.401478 + 0.915869i \(0.631503\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.90615 15.4259i 0.455083 0.788227i −0.543610 0.839338i \(-0.682943\pi\)
0.998693 + 0.0511113i \(0.0162763\pi\)
\(384\) 0 0
\(385\) 11.0284 38.5368i 0.562057 1.96402i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.7074 + 25.4740i 0.745695 + 1.29158i 0.949869 + 0.312647i \(0.101216\pi\)
−0.204175 + 0.978934i \(0.565451\pi\)
\(390\) 0 0
\(391\) 2.34563 + 4.06275i 0.118624 + 0.205462i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.03774 + 6.99357i −0.203161 + 0.351885i
\(396\) 0 0
\(397\) −1.55930 2.70079i −0.0782592 0.135549i 0.824240 0.566241i \(-0.191603\pi\)
−0.902499 + 0.430692i \(0.858270\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.8613 + 30.9367i −0.891950 + 1.54490i −0.0544157 + 0.998518i \(0.517330\pi\)
−0.837534 + 0.546385i \(0.816004\pi\)
\(402\) 0 0
\(403\) −14.0059 24.2590i −0.697684 1.20842i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.0572 + 19.1517i −0.548087 + 0.949315i
\(408\) 0 0
\(409\) 9.81652 0.485396 0.242698 0.970102i \(-0.421968\pi\)
0.242698 + 0.970102i \(0.421968\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.03320 31.5651i 0.444494 1.55321i
\(414\) 0 0
\(415\) −5.51814 9.55771i −0.270875 0.469169i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.09812 + 10.5623i 0.297913 + 0.516000i 0.975658 0.219297i \(-0.0703762\pi\)
−0.677746 + 0.735297i \(0.737043\pi\)
\(420\) 0 0
\(421\) −5.10015 + 8.83373i −0.248566 + 0.430529i −0.963128 0.269043i \(-0.913293\pi\)
0.714562 + 0.699572i \(0.246626\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.38085 0.358024
\(426\) 0 0
\(427\) −3.95026 + 13.8035i −0.191166 + 0.668000i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.70254 + 9.87710i −0.274682 + 0.475763i −0.970055 0.242886i \(-0.921906\pi\)
0.695373 + 0.718649i \(0.255239\pi\)
\(432\) 0 0
\(433\) 26.2391 1.26097 0.630486 0.776201i \(-0.282856\pi\)
0.630486 + 0.776201i \(0.282856\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 32.3790 1.54890
\(438\) 0 0
\(439\) −22.9554 −1.09560 −0.547801 0.836609i \(-0.684535\pi\)
−0.547801 + 0.836609i \(0.684535\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.4025 1.06438 0.532188 0.846626i \(-0.321370\pi\)
0.532188 + 0.846626i \(0.321370\pi\)
\(444\) 0 0
\(445\) 38.9993 1.84874
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.0576 −0.805000 −0.402500 0.915420i \(-0.631859\pi\)
−0.402500 + 0.915420i \(0.631859\pi\)
\(450\) 0 0
\(451\) 5.29829 9.17690i 0.249487 0.432123i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.47340 + 26.1146i −0.350358 + 1.22427i
\(456\) 0 0
\(457\) 9.54729 0.446604 0.223302 0.974749i \(-0.428316\pi\)
0.223302 + 0.974749i \(0.428316\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.1213 + 17.5305i −0.471394 + 0.816478i −0.999464 0.0327222i \(-0.989582\pi\)
0.528070 + 0.849201i \(0.322916\pi\)
\(462\) 0 0
\(463\) 7.81948 + 13.5437i 0.363402 + 0.629431i 0.988518 0.151101i \(-0.0482818\pi\)
−0.625116 + 0.780532i \(0.714948\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.96638 5.13793i −0.137268 0.237755i 0.789194 0.614144i \(-0.210499\pi\)
−0.926461 + 0.376390i \(0.877165\pi\)
\(468\) 0 0
\(469\) −2.43128 + 8.49571i −0.112266 + 0.392295i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 29.2264 1.34383
\(474\) 0 0
\(475\) 25.4712 44.1175i 1.16870 2.02425i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.69708 + 15.0638i 0.397380 + 0.688282i 0.993402 0.114686i \(-0.0365862\pi\)
−0.596022 + 0.802968i \(0.703253\pi\)
\(480\) 0 0
\(481\) 7.49298 12.9782i 0.341650 0.591756i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.0009 38.1067i −0.999009 1.73033i
\(486\) 0 0
\(487\) 9.76967 16.9216i 0.442706 0.766790i −0.555183 0.831728i \(-0.687352\pi\)
0.997889 + 0.0649386i \(0.0206851\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.16702 10.6816i −0.278314 0.482054i 0.692652 0.721272i \(-0.256442\pi\)
−0.970966 + 0.239218i \(0.923109\pi\)
\(492\) 0 0
\(493\) −1.82729 3.16496i −0.0822971 0.142543i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.39502 + 32.8294i −0.421424 + 1.47260i
\(498\) 0 0
\(499\) 9.27308 16.0614i 0.415120 0.719009i −0.580321 0.814388i \(-0.697073\pi\)
0.995441 + 0.0953788i \(0.0304062\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.3264 −0.638782 −0.319391 0.947623i \(-0.603478\pi\)
−0.319391 + 0.947623i \(0.603478\pi\)
\(504\) 0 0
\(505\) 2.66703 0.118681
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.43056 + 14.6022i −0.373678 + 0.647229i −0.990128 0.140165i \(-0.955237\pi\)
0.616450 + 0.787394i \(0.288570\pi\)
\(510\) 0 0
\(511\) 30.2087 + 31.2491i 1.33635 + 1.38238i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.92145 + 6.79215i 0.172800 + 0.299298i
\(516\) 0 0
\(517\) −6.63238 11.4876i −0.291692 0.505225i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.8132 + 18.7291i −0.473737 + 0.820536i −0.999548 0.0300652i \(-0.990428\pi\)
0.525811 + 0.850601i \(0.323762\pi\)
\(522\) 0 0
\(523\) −8.27472 14.3322i −0.361828 0.626705i 0.626433 0.779475i \(-0.284514\pi\)
−0.988262 + 0.152770i \(0.951181\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.08361 8.80507i 0.221446 0.383555i
\(528\) 0 0
\(529\) 2.14470 + 3.71472i 0.0932476 + 0.161510i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.59040 + 6.21876i −0.155517 + 0.269364i
\(534\) 0 0
\(535\) 15.6312 0.675796
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.04479 + 30.8480i −0.0450025 + 1.32872i
\(540\) 0 0
\(541\) −11.9542 20.7053i −0.513952 0.890191i −0.999869 0.0161861i \(-0.994848\pi\)
0.485917 0.874005i \(-0.338486\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.13317 + 14.0871i 0.348387 + 0.603423i
\(546\) 0 0
\(547\) 14.8193 25.6678i 0.633627 1.09747i −0.353177 0.935556i \(-0.614899\pi\)
0.986804 0.161918i \(-0.0517679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −25.2238 −1.07457
\(552\) 0 0
\(553\) 1.71087 5.97836i 0.0727536 0.254226i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.8366 18.7695i 0.459160 0.795288i −0.539757 0.841821i \(-0.681484\pi\)
0.998917 + 0.0465330i \(0.0148173\pi\)
\(558\) 0 0
\(559\) −19.8054 −0.837679
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.1556 0.596589 0.298294 0.954474i \(-0.403582\pi\)
0.298294 + 0.954474i \(0.403582\pi\)
\(564\) 0 0
\(565\) 1.20510 0.0506988
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.0356 1.42684 0.713422 0.700734i \(-0.247144\pi\)
0.713422 + 0.700734i \(0.247144\pi\)
\(570\) 0 0
\(571\) 5.34970 0.223878 0.111939 0.993715i \(-0.464294\pi\)
0.111939 + 0.993715i \(0.464294\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −29.4378 −1.22764
\(576\) 0 0
\(577\) 11.1865 19.3756i 0.465699 0.806615i −0.533533 0.845779i \(-0.679136\pi\)
0.999233 + 0.0391640i \(0.0124695\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.90659 + 6.11003i 0.245047 + 0.253487i
\(582\) 0 0
\(583\) −4.68011 −0.193830
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.49899 + 4.32839i −0.103145 + 0.178652i −0.912979 0.408007i \(-0.866224\pi\)
0.809834 + 0.586659i \(0.199557\pi\)
\(588\) 0 0
\(589\) −35.0870 60.7724i −1.44573 2.50408i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.1698 21.0788i −0.499755 0.865601i 0.500245 0.865884i \(-0.333243\pi\)
−1.00000 0.000282582i \(0.999910\pi\)
\(594\) 0 0
\(595\) −9.56498 + 2.39015i −0.392126 + 0.0979868i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 46.2145 1.88827 0.944137 0.329552i \(-0.106898\pi\)
0.944137 + 0.329552i \(0.106898\pi\)
\(600\) 0 0
\(601\) −16.6163 + 28.7803i −0.677792 + 1.17397i 0.297852 + 0.954612i \(0.403730\pi\)
−0.975644 + 0.219359i \(0.929603\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.5040 25.1217i −0.589673 1.02134i
\(606\) 0 0
\(607\) 21.9318 37.9869i 0.890182 1.54184i 0.0505262 0.998723i \(-0.483910\pi\)
0.839656 0.543118i \(-0.182756\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.49445 + 7.78462i 0.181826 + 0.314932i
\(612\) 0 0
\(613\) 1.81569 3.14487i 0.0733351 0.127020i −0.827026 0.562164i \(-0.809969\pi\)
0.900361 + 0.435144i \(0.143302\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.4542 18.1073i −0.420872 0.728971i 0.575153 0.818046i \(-0.304942\pi\)
−0.996025 + 0.0890744i \(0.971609\pi\)
\(618\) 0 0
\(619\) 11.9745 + 20.7405i 0.481296 + 0.833629i 0.999770 0.0214645i \(-0.00683289\pi\)
−0.518474 + 0.855094i \(0.673500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29.1347 + 7.28035i −1.16726 + 0.291681i
\(624\) 0 0
\(625\) 6.35626 11.0094i 0.254251 0.440375i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.43933 0.216880
\(630\) 0 0
\(631\) 6.06918 0.241610 0.120805 0.992676i \(-0.461452\pi\)
0.120805 + 0.992676i \(0.461452\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.3327 36.9492i 0.846561 1.46629i
\(636\) 0 0
\(637\) 0.708008 20.9042i 0.0280523 0.828255i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.69407 15.0586i −0.343395 0.594778i 0.641666 0.766984i \(-0.278244\pi\)
−0.985061 + 0.172207i \(0.944910\pi\)
\(642\) 0 0
\(643\) −9.66411 16.7387i −0.381115 0.660111i 0.610107 0.792319i \(-0.291127\pi\)
−0.991222 + 0.132208i \(0.957793\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.7041 22.0042i 0.499451 0.865075i −0.500549 0.865708i \(-0.666868\pi\)
1.00000 0.000633482i \(0.000201644\pi\)
\(648\) 0 0
\(649\) −27.3588 47.3869i −1.07393 1.86010i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.9064 + 22.3545i −0.505065 + 0.874799i 0.494917 + 0.868940i \(0.335198\pi\)
−0.999983 + 0.00585902i \(0.998135\pi\)
\(654\) 0 0
\(655\) −27.0459 46.8449i −1.05677 1.83038i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.62598 14.9406i 0.336020 0.582004i −0.647660 0.761930i \(-0.724252\pi\)
0.983680 + 0.179925i \(0.0575856\pi\)
\(660\) 0 0
\(661\) 12.9635 0.504222 0.252111 0.967698i \(-0.418875\pi\)
0.252111 + 0.967698i \(0.418875\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.7220 + 65.4210i −0.726008 + 2.53692i
\(666\) 0 0
\(667\) 7.28797 + 12.6231i 0.282191 + 0.488769i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.9641 + 20.7225i 0.461871 + 0.799984i
\(672\) 0 0
\(673\) −20.8060 + 36.0371i −0.802013 + 1.38913i 0.116277 + 0.993217i \(0.462904\pi\)
−0.918289 + 0.395910i \(0.870429\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.1998 0.853209 0.426605 0.904438i \(-0.359710\pi\)
0.426605 + 0.904438i \(0.359710\pi\)
\(678\) 0 0
\(679\) 23.5496 + 24.3607i 0.903752 + 0.934879i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.60315 + 7.97289i −0.176135 + 0.305074i −0.940553 0.339646i \(-0.889693\pi\)
0.764419 + 0.644720i \(0.223026\pi\)
\(684\) 0 0
\(685\) 14.5346 0.555338
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.17149 0.120824
\(690\) 0 0
\(691\) 40.0585 1.52390 0.761949 0.647636i \(-0.224242\pi\)
0.761949 + 0.647636i \(0.224242\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 67.3692 2.55546
\(696\) 0 0
\(697\) −2.60636 −0.0987228
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.3868 −1.29877 −0.649385 0.760459i \(-0.724974\pi\)
−0.649385 + 0.760459i \(0.724974\pi\)
\(702\) 0 0
\(703\) 18.7711 32.5124i 0.707964 1.22623i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.99242 + 0.497878i −0.0749328 + 0.0187246i
\(708\) 0 0
\(709\) 21.1840 0.795582 0.397791 0.917476i \(-0.369777\pi\)
0.397791 + 0.917476i \(0.369777\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.2755 + 35.1181i −0.759322 + 1.31518i
\(714\) 0 0
\(715\) 22.6347 + 39.2044i 0.846489 + 1.46616i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.5994 37.4113i −0.805523 1.39521i −0.915937 0.401321i \(-0.868551\pi\)
0.110414 0.993886i \(-0.464782\pi\)
\(720\) 0 0
\(721\) −4.19750 4.34207i −0.156323 0.161707i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22.9326 0.851696
\(726\) 0 0
\(727\) −20.5571 + 35.6059i −0.762420 + 1.32055i 0.179180 + 0.983816i \(0.442656\pi\)
−0.941600 + 0.336734i \(0.890678\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.59430 6.22551i −0.132940 0.230259i
\(732\) 0 0
\(733\) −26.0425 + 45.1070i −0.961903 + 1.66607i −0.244189 + 0.969728i \(0.578522\pi\)
−0.717715 + 0.696337i \(0.754812\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.36361 + 12.7541i 0.271242 + 0.469805i
\(738\) 0 0
\(739\) −7.18624 + 12.4469i −0.264350 + 0.457868i −0.967393 0.253279i \(-0.918491\pi\)
0.703043 + 0.711147i \(0.251824\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.3167 36.9216i −0.782034 1.35452i −0.930755 0.365643i \(-0.880849\pi\)
0.148721 0.988879i \(-0.452484\pi\)
\(744\) 0 0
\(745\) −16.7097 28.9421i −0.612198 1.06036i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.6774 + 2.91802i −0.426683 + 0.106622i
\(750\) 0 0
\(751\) −18.9846 + 32.8823i −0.692758 + 1.19989i 0.278173 + 0.960531i \(0.410271\pi\)
−0.970931 + 0.239360i \(0.923062\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.7458 1.22813
\(756\) 0 0
\(757\) 27.6692 1.00565 0.502827 0.864387i \(-0.332293\pi\)
0.502827 + 0.864387i \(0.332293\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.97210 10.3440i 0.216488 0.374969i −0.737244 0.675627i \(-0.763873\pi\)
0.953732 + 0.300658i \(0.0972063\pi\)
\(762\) 0 0
\(763\) −8.70570 9.00554i −0.315167 0.326023i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.5398 + 32.1119i 0.669434 + 1.15949i
\(768\) 0 0
\(769\) −17.4026 30.1422i −0.627554 1.08695i −0.988041 0.154191i \(-0.950723\pi\)
0.360487 0.932764i \(-0.382610\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.5014 23.3851i 0.485611 0.841103i −0.514253 0.857639i \(-0.671931\pi\)
0.999863 + 0.0165363i \(0.00526391\pi\)
\(774\) 0 0
\(775\) 31.8998 + 55.2521i 1.14587 + 1.98471i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.99450 + 15.5789i −0.322261 + 0.558173i
\(780\) 0 0
\(781\) 28.4547 + 49.2850i 1.01819 + 1.76356i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.6856 35.8286i 0.738302 1.27878i
\(786\) 0 0
\(787\) −21.2840 −0.758693 −0.379347 0.925255i \(-0.623851\pi\)
−0.379347 + 0.925255i \(0.623851\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.900275 + 0.224966i −0.0320101 + 0.00799887i
\(792\) 0 0
\(793\) −8.10754 14.0427i −0.287907 0.498670i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.3062 + 17.8508i 0.365064 + 0.632309i 0.988786 0.149337i \(-0.0477138\pi\)
−0.623723 + 0.781646i \(0.714381\pi\)
\(798\)