Properties

Label 3024.2.q.k.2305.8
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.8
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.k.2881.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841578 + 1.45766i) q^{5} +(-1.65502 - 2.06419i) q^{7} +O(q^{10})\) \(q+(0.841578 + 1.45766i) q^{5} +(-1.65502 - 2.06419i) q^{7} +(-0.622490 + 1.07818i) q^{11} +(1.96039 - 3.39550i) q^{13} +(1.62691 + 2.81788i) q^{17} +(-2.36192 + 4.09097i) q^{19} +(0.199068 + 0.344795i) q^{23} +(1.08349 - 1.87667i) q^{25} +(3.19896 + 5.54076i) q^{29} +0.578367 q^{31} +(1.61605 - 4.14963i) q^{35} +(2.72146 - 4.71371i) q^{37} +(-4.20216 + 7.27836i) q^{41} +(-2.46299 - 4.26603i) q^{43} -0.425190 q^{47} +(-1.52179 + 6.83258i) q^{49} +(0.466315 + 0.807681i) q^{53} -2.09550 q^{55} +6.05054 q^{59} +10.2092 q^{61} +6.59930 q^{65} +9.41952 q^{67} +8.46617 q^{71} +(6.82340 + 11.8185i) q^{73} +(3.25582 - 0.499480i) q^{77} +5.53340 q^{79} +(-8.03669 - 13.9199i) q^{83} +(-2.73833 + 4.74293i) q^{85} +(6.03776 - 10.4577i) q^{89} +(-10.2535 + 1.57300i) q^{91} -7.95097 q^{95} +(-5.86046 - 10.1506i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.841578 + 1.45766i 0.376365 + 0.651883i 0.990530 0.137294i \(-0.0438405\pi\)
−0.614165 + 0.789177i \(0.710507\pi\)
\(6\) 0 0
\(7\) −1.65502 2.06419i −0.625540 0.780192i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.622490 + 1.07818i −0.187688 + 0.325085i −0.944479 0.328572i \(-0.893433\pi\)
0.756791 + 0.653657i \(0.226766\pi\)
\(12\) 0 0
\(13\) 1.96039 3.39550i 0.543715 0.941743i −0.454971 0.890506i \(-0.650350\pi\)
0.998687 0.0512366i \(-0.0163162\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.62691 + 2.81788i 0.394582 + 0.683437i 0.993048 0.117712i \(-0.0375559\pi\)
−0.598465 + 0.801149i \(0.704223\pi\)
\(18\) 0 0
\(19\) −2.36192 + 4.09097i −0.541863 + 0.938534i 0.456935 + 0.889500i \(0.348947\pi\)
−0.998797 + 0.0490333i \(0.984386\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.199068 + 0.344795i 0.0415085 + 0.0718948i 0.886033 0.463622i \(-0.153450\pi\)
−0.844525 + 0.535516i \(0.820117\pi\)
\(24\) 0 0
\(25\) 1.08349 1.87667i 0.216699 0.375333i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.19896 + 5.54076i 0.594032 + 1.02889i 0.993683 + 0.112226i \(0.0357979\pi\)
−0.399651 + 0.916667i \(0.630869\pi\)
\(30\) 0 0
\(31\) 0.578367 0.103878 0.0519389 0.998650i \(-0.483460\pi\)
0.0519389 + 0.998650i \(0.483460\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.61605 4.14963i 0.273163 0.701416i
\(36\) 0 0
\(37\) 2.72146 4.71371i 0.447405 0.774928i −0.550811 0.834630i \(-0.685682\pi\)
0.998216 + 0.0597015i \(0.0190149\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.20216 + 7.27836i −0.656267 + 1.13669i 0.325307 + 0.945608i \(0.394532\pi\)
−0.981574 + 0.191080i \(0.938801\pi\)
\(42\) 0 0
\(43\) −2.46299 4.26603i −0.375603 0.650563i 0.614814 0.788672i \(-0.289231\pi\)
−0.990417 + 0.138109i \(0.955898\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.425190 −0.0620203 −0.0310101 0.999519i \(-0.509872\pi\)
−0.0310101 + 0.999519i \(0.509872\pi\)
\(48\) 0 0
\(49\) −1.52179 + 6.83258i −0.217399 + 0.976083i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.466315 + 0.807681i 0.0640533 + 0.110944i 0.896274 0.443501i \(-0.146264\pi\)
−0.832220 + 0.554445i \(0.812931\pi\)
\(54\) 0 0
\(55\) −2.09550 −0.282557
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.05054 0.787713 0.393856 0.919172i \(-0.371141\pi\)
0.393856 + 0.919172i \(0.371141\pi\)
\(60\) 0 0
\(61\) 10.2092 1.30715 0.653575 0.756862i \(-0.273268\pi\)
0.653575 + 0.756862i \(0.273268\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.59930 0.818542
\(66\) 0 0
\(67\) 9.41952 1.15078 0.575389 0.817880i \(-0.304851\pi\)
0.575389 + 0.817880i \(0.304851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.46617 1.00475 0.502375 0.864650i \(-0.332460\pi\)
0.502375 + 0.864650i \(0.332460\pi\)
\(72\) 0 0
\(73\) 6.82340 + 11.8185i 0.798619 + 1.38325i 0.920516 + 0.390705i \(0.127769\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.25582 0.499480i 0.371035 0.0569211i
\(78\) 0 0
\(79\) 5.53340 0.622556 0.311278 0.950319i \(-0.399243\pi\)
0.311278 + 0.950319i \(0.399243\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.03669 13.9199i −0.882141 1.52791i −0.848956 0.528463i \(-0.822768\pi\)
−0.0331848 0.999449i \(-0.510565\pi\)
\(84\) 0 0
\(85\) −2.73833 + 4.74293i −0.297014 + 0.514444i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.03776 10.4577i 0.640001 1.10851i −0.345431 0.938444i \(-0.612267\pi\)
0.985432 0.170070i \(-0.0543993\pi\)
\(90\) 0 0
\(91\) −10.2535 + 1.57300i −1.07486 + 0.164895i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.95097 −0.815753
\(96\) 0 0
\(97\) −5.86046 10.1506i −0.595040 1.03064i −0.993541 0.113472i \(-0.963803\pi\)
0.398501 0.917168i \(-0.369530\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.70302 4.68177i 0.268961 0.465854i −0.699633 0.714502i \(-0.746653\pi\)
0.968594 + 0.248649i \(0.0799865\pi\)
\(102\) 0 0
\(103\) 7.31018 + 12.6616i 0.720294 + 1.24759i 0.960882 + 0.276958i \(0.0893263\pi\)
−0.240588 + 0.970627i \(0.577340\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.40209 + 5.89259i −0.328892 + 0.569658i −0.982292 0.187354i \(-0.940009\pi\)
0.653400 + 0.757013i \(0.273342\pi\)
\(108\) 0 0
\(109\) 8.37636 + 14.5083i 0.802310 + 1.38964i 0.918092 + 0.396367i \(0.129729\pi\)
−0.115783 + 0.993275i \(0.536938\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.77154 + 11.7287i −0.637013 + 1.10334i 0.349072 + 0.937096i \(0.386497\pi\)
−0.986085 + 0.166243i \(0.946836\pi\)
\(114\) 0 0
\(115\) −0.335062 + 0.580344i −0.0312447 + 0.0541174i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.12409 8.02191i 0.286385 0.735367i
\(120\) 0 0
\(121\) 4.72501 + 8.18396i 0.429547 + 0.743996i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0632 1.07896
\(126\) 0 0
\(127\) −10.5904 −0.939748 −0.469874 0.882734i \(-0.655701\pi\)
−0.469874 + 0.882734i \(0.655701\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.1819 + 19.3676i 0.976968 + 1.69216i 0.673282 + 0.739385i \(0.264884\pi\)
0.303685 + 0.952772i \(0.401783\pi\)
\(132\) 0 0
\(133\) 12.3536 1.89519i 1.07119 0.164333i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.97700 15.5486i 0.766957 1.32841i −0.172249 0.985053i \(-0.555104\pi\)
0.939206 0.343354i \(-0.111563\pi\)
\(138\) 0 0
\(139\) −0.570825 + 0.988699i −0.0484168 + 0.0838603i −0.889218 0.457483i \(-0.848751\pi\)
0.840801 + 0.541344i \(0.182084\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44065 + 4.22733i 0.204098 + 0.353507i
\(144\) 0 0
\(145\) −5.38434 + 9.32596i −0.447145 + 0.774479i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.82916 + 15.2925i 0.723313 + 1.25281i 0.959665 + 0.281147i \(0.0907148\pi\)
−0.236352 + 0.971667i \(0.575952\pi\)
\(150\) 0 0
\(151\) −7.61769 + 13.1942i −0.619919 + 1.07373i 0.369581 + 0.929198i \(0.379501\pi\)
−0.989500 + 0.144532i \(0.953832\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.486741 + 0.843060i 0.0390960 + 0.0677162i
\(156\) 0 0
\(157\) −13.6288 −1.08769 −0.543847 0.839184i \(-0.683033\pi\)
−0.543847 + 0.839184i \(0.683033\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.382263 0.981559i 0.0301265 0.0773577i
\(162\) 0 0
\(163\) 4.04726 7.01005i 0.317006 0.549070i −0.662856 0.748747i \(-0.730656\pi\)
0.979862 + 0.199677i \(0.0639893\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.07739 + 3.59814i −0.160753 + 0.278433i −0.935139 0.354281i \(-0.884726\pi\)
0.774386 + 0.632714i \(0.218059\pi\)
\(168\) 0 0
\(169\) −1.18629 2.05471i −0.0912529 0.158055i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.8346 −1.05183 −0.525913 0.850539i \(-0.676276\pi\)
−0.525913 + 0.850539i \(0.676276\pi\)
\(174\) 0 0
\(175\) −5.66701 + 0.869385i −0.428386 + 0.0657193i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.71167 8.16084i −0.352166 0.609970i 0.634462 0.772954i \(-0.281222\pi\)
−0.986629 + 0.162984i \(0.947888\pi\)
\(180\) 0 0
\(181\) 1.32133 0.0982136 0.0491068 0.998794i \(-0.484363\pi\)
0.0491068 + 0.998794i \(0.484363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.16128 0.673551
\(186\) 0 0
\(187\) −4.05093 −0.296233
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.2854 1.17837 0.589186 0.807997i \(-0.299449\pi\)
0.589186 + 0.807997i \(0.299449\pi\)
\(192\) 0 0
\(193\) 2.56155 0.184384 0.0921921 0.995741i \(-0.470613\pi\)
0.0921921 + 0.995741i \(0.470613\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.6916 −1.54546 −0.772730 0.634735i \(-0.781109\pi\)
−0.772730 + 0.634735i \(0.781109\pi\)
\(198\) 0 0
\(199\) 5.59684 + 9.69402i 0.396750 + 0.687191i 0.993323 0.115368i \(-0.0368047\pi\)
−0.596573 + 0.802559i \(0.703471\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.14285 15.7734i 0.431143 1.10707i
\(204\) 0 0
\(205\) −14.1458 −0.987985
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.94055 5.09318i −0.203402 0.352303i
\(210\) 0 0
\(211\) 14.1807 24.5616i 0.976237 1.69089i 0.300444 0.953799i \(-0.402865\pi\)
0.675793 0.737092i \(-0.263801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.14560 7.18039i 0.282728 0.489699i
\(216\) 0 0
\(217\) −0.957211 1.19386i −0.0649797 0.0810446i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.7575 0.858162
\(222\) 0 0
\(223\) 12.6962 + 21.9905i 0.850202 + 1.47259i 0.881026 + 0.473068i \(0.156853\pi\)
−0.0308242 + 0.999525i \(0.509813\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.31430 + 4.00849i −0.153606 + 0.266053i −0.932550 0.361040i \(-0.882422\pi\)
0.778945 + 0.627092i \(0.215755\pi\)
\(228\) 0 0
\(229\) −1.16296 2.01431i −0.0768506 0.133109i 0.825039 0.565076i \(-0.191153\pi\)
−0.901890 + 0.431967i \(0.857820\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.37989 11.0503i 0.417960 0.723929i −0.577774 0.816197i \(-0.696078\pi\)
0.995734 + 0.0922683i \(0.0294117\pi\)
\(234\) 0 0
\(235\) −0.357830 0.619780i −0.0233423 0.0404300i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0492 + 19.1378i −0.714714 + 1.23792i 0.248355 + 0.968669i \(0.420110\pi\)
−0.963070 + 0.269252i \(0.913223\pi\)
\(240\) 0 0
\(241\) −10.0088 + 17.3358i −0.644726 + 1.11670i 0.339639 + 0.940556i \(0.389695\pi\)
−0.984365 + 0.176142i \(0.943638\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.2403 + 3.53190i −0.718114 + 0.225645i
\(246\) 0 0
\(247\) 9.26060 + 16.0398i 0.589238 + 1.02059i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.12390 −0.134059 −0.0670297 0.997751i \(-0.521352\pi\)
−0.0670297 + 0.997751i \(0.521352\pi\)
\(252\) 0 0
\(253\) −0.495671 −0.0311625
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.38150 11.0531i −0.398067 0.689472i 0.595420 0.803414i \(-0.296986\pi\)
−0.993487 + 0.113942i \(0.963652\pi\)
\(258\) 0 0
\(259\) −14.2341 + 2.18367i −0.884463 + 0.135687i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.53432 9.58572i 0.341261 0.591081i −0.643406 0.765525i \(-0.722479\pi\)
0.984667 + 0.174444i \(0.0558127\pi\)
\(264\) 0 0
\(265\) −0.784881 + 1.35945i −0.0482148 + 0.0835105i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.77479 + 3.07403i 0.108211 + 0.187427i 0.915046 0.403351i \(-0.132154\pi\)
−0.806835 + 0.590777i \(0.798821\pi\)
\(270\) 0 0
\(271\) 0.687666 1.19107i 0.0417727 0.0723525i −0.844383 0.535740i \(-0.820033\pi\)
0.886156 + 0.463387i \(0.153366\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.34893 + 2.33641i 0.0813434 + 0.140891i
\(276\) 0 0
\(277\) 14.5809 25.2548i 0.876079 1.51741i 0.0204692 0.999790i \(-0.493484\pi\)
0.855609 0.517622i \(-0.173183\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.29603 10.9050i −0.375590 0.650540i 0.614826 0.788663i \(-0.289226\pi\)
−0.990415 + 0.138123i \(0.955893\pi\)
\(282\) 0 0
\(283\) 9.46056 0.562372 0.281186 0.959653i \(-0.409272\pi\)
0.281186 + 0.959653i \(0.409272\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.9786 3.37178i 1.29736 0.199030i
\(288\) 0 0
\(289\) 3.20636 5.55358i 0.188609 0.326681i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.32726 14.4232i 0.486484 0.842614i −0.513396 0.858152i \(-0.671613\pi\)
0.999879 + 0.0155376i \(0.00494598\pi\)
\(294\) 0 0
\(295\) 5.09200 + 8.81960i 0.296468 + 0.513497i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.56100 0.0902752
\(300\) 0 0
\(301\) −4.72960 + 12.1445i −0.272610 + 0.699996i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.59181 + 14.8815i 0.491966 + 0.852110i
\(306\) 0 0
\(307\) 9.55966 0.545599 0.272799 0.962071i \(-0.412051\pi\)
0.272799 + 0.962071i \(0.412051\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.3702 1.49532 0.747658 0.664084i \(-0.231178\pi\)
0.747658 + 0.664084i \(0.231178\pi\)
\(312\) 0 0
\(313\) −12.7018 −0.717949 −0.358975 0.933347i \(-0.616874\pi\)
−0.358975 + 0.933347i \(0.616874\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.0331536 −0.00186209 −0.000931047 1.00000i \(-0.500296\pi\)
−0.000931047 1.00000i \(0.500296\pi\)
\(318\) 0 0
\(319\) −7.96528 −0.445970
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.3705 −0.855238
\(324\) 0 0
\(325\) −4.24815 7.35801i −0.235645 0.408149i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.703699 + 0.877674i 0.0387962 + 0.0483877i
\(330\) 0 0
\(331\) 4.85388 0.266793 0.133397 0.991063i \(-0.457412\pi\)
0.133397 + 0.991063i \(0.457412\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.92726 + 13.7304i 0.433112 + 0.750173i
\(336\) 0 0
\(337\) −4.32200 + 7.48592i −0.235434 + 0.407784i −0.959399 0.282053i \(-0.908985\pi\)
0.723965 + 0.689837i \(0.242318\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.360028 + 0.623586i −0.0194966 + 0.0337691i
\(342\) 0 0
\(343\) 16.6224 8.16680i 0.897524 0.440966i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −23.2232 −1.24669 −0.623344 0.781948i \(-0.714226\pi\)
−0.623344 + 0.781948i \(0.714226\pi\)
\(348\) 0 0
\(349\) −3.76025 6.51295i −0.201282 0.348630i 0.747660 0.664082i \(-0.231177\pi\)
−0.948942 + 0.315452i \(0.897844\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.459528 + 0.795925i −0.0244582 + 0.0423628i −0.877995 0.478669i \(-0.841119\pi\)
0.853537 + 0.521032i \(0.174453\pi\)
\(354\) 0 0
\(355\) 7.12495 + 12.3408i 0.378153 + 0.654980i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.24300 14.2773i 0.435049 0.753527i −0.562251 0.826967i \(-0.690064\pi\)
0.997300 + 0.0734398i \(0.0233977\pi\)
\(360\) 0 0
\(361\) −1.65737 2.87066i −0.0872302 0.151087i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.4848 + 19.8923i −0.601144 + 1.04121i
\(366\) 0 0
\(367\) −6.33921 + 10.9798i −0.330904 + 0.573143i −0.982689 0.185261i \(-0.940687\pi\)
0.651785 + 0.758404i \(0.274020\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.895448 2.29930i 0.0464894 0.119373i
\(372\) 0 0
\(373\) −11.3410 19.6433i −0.587217 1.01709i −0.994595 0.103830i \(-0.966890\pi\)
0.407378 0.913259i \(-0.366443\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.0849 1.29194
\(378\) 0 0
\(379\) −19.0925 −0.980717 −0.490358 0.871521i \(-0.663134\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.03963 + 5.26479i 0.155318 + 0.269018i 0.933175 0.359423i \(-0.117027\pi\)
−0.777857 + 0.628441i \(0.783693\pi\)
\(384\) 0 0
\(385\) 3.46809 + 4.32551i 0.176750 + 0.220448i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.315781 + 0.546948i −0.0160107 + 0.0277314i −0.873920 0.486070i \(-0.838430\pi\)
0.857909 + 0.513802i \(0.171763\pi\)
\(390\) 0 0
\(391\) −0.647728 + 1.12190i −0.0327570 + 0.0567368i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.65679 + 8.06579i 0.234308 + 0.405834i
\(396\) 0 0
\(397\) −18.1830 + 31.4939i −0.912578 + 1.58063i −0.102170 + 0.994767i \(0.532579\pi\)
−0.810408 + 0.585865i \(0.800755\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.8069 27.3783i −0.789357 1.36721i −0.926361 0.376636i \(-0.877081\pi\)
0.137004 0.990571i \(-0.456253\pi\)
\(402\) 0 0
\(403\) 1.13383 1.96385i 0.0564800 0.0978262i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.38816 + 5.86847i 0.167945 + 0.290889i
\(408\) 0 0
\(409\) 20.1812 0.997896 0.498948 0.866632i \(-0.333720\pi\)
0.498948 + 0.866632i \(0.333720\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0138 12.4895i −0.492746 0.614567i
\(414\) 0 0
\(415\) 13.5270 23.4294i 0.664014 1.15011i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.4159 + 21.5049i −0.606555 + 1.05058i 0.385248 + 0.922813i \(0.374116\pi\)
−0.991804 + 0.127772i \(0.959217\pi\)
\(420\) 0 0
\(421\) −5.71841 9.90458i −0.278698 0.482720i 0.692363 0.721549i \(-0.256570\pi\)
−0.971062 + 0.238829i \(0.923236\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.05096 0.342022
\(426\) 0 0
\(427\) −16.8964 21.0737i −0.817675 1.01983i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.80157 + 4.85246i 0.134947 + 0.233735i 0.925577 0.378559i \(-0.123580\pi\)
−0.790630 + 0.612294i \(0.790247\pi\)
\(432\) 0 0
\(433\) −4.22555 −0.203067 −0.101534 0.994832i \(-0.532375\pi\)
−0.101534 + 0.994832i \(0.532375\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.88073 −0.0899676
\(438\) 0 0
\(439\) 35.4631 1.69256 0.846281 0.532737i \(-0.178836\pi\)
0.846281 + 0.532737i \(0.178836\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.9315 −1.08951 −0.544755 0.838595i \(-0.683377\pi\)
−0.544755 + 0.838595i \(0.683377\pi\)
\(444\) 0 0
\(445\) 20.3250 0.963496
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.4850 −0.966747 −0.483373 0.875414i \(-0.660589\pi\)
−0.483373 + 0.875414i \(0.660589\pi\)
\(450\) 0 0
\(451\) −5.23161 9.06141i −0.246347 0.426685i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.9220 13.6222i −0.512031 0.638620i
\(456\) 0 0
\(457\) 15.4535 0.722886 0.361443 0.932394i \(-0.382284\pi\)
0.361443 + 0.932394i \(0.382284\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0815 24.3898i −0.655839 1.13595i −0.981683 0.190523i \(-0.938982\pi\)
0.325844 0.945424i \(-0.394352\pi\)
\(462\) 0 0
\(463\) 15.3193 26.5338i 0.711948 1.23313i −0.252177 0.967681i \(-0.581146\pi\)
0.964125 0.265449i \(-0.0855202\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.61798 + 11.4627i −0.306244 + 0.530429i −0.977537 0.210762i \(-0.932406\pi\)
0.671294 + 0.741191i \(0.265739\pi\)
\(468\) 0 0
\(469\) −15.5895 19.4437i −0.719857 0.897827i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.13275 0.281984
\(474\) 0 0
\(475\) 5.11826 + 8.86508i 0.234842 + 0.406758i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.04358 + 12.1998i −0.321829 + 0.557425i −0.980866 0.194687i \(-0.937631\pi\)
0.659036 + 0.752111i \(0.270964\pi\)
\(480\) 0 0
\(481\) −10.6703 18.4814i −0.486522 0.842681i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.86407 17.0851i 0.447904 0.775793i
\(486\) 0 0
\(487\) −3.45654 5.98690i −0.156631 0.271292i 0.777021 0.629475i \(-0.216730\pi\)
−0.933652 + 0.358183i \(0.883397\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.3481 + 26.5837i −0.692651 + 1.19971i 0.278315 + 0.960490i \(0.410224\pi\)
−0.970966 + 0.239217i \(0.923109\pi\)
\(492\) 0 0
\(493\) −10.4088 + 18.0286i −0.468789 + 0.811966i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.0117 17.4758i −0.628511 0.783898i
\(498\) 0 0
\(499\) −11.0186 19.0847i −0.493259 0.854350i 0.506711 0.862116i \(-0.330861\pi\)
−0.999970 + 0.00776631i \(0.997528\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 38.9653 1.73737 0.868687 0.495361i \(-0.164964\pi\)
0.868687 + 0.495361i \(0.164964\pi\)
\(504\) 0 0
\(505\) 9.09922 0.404910
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.1471 24.5034i −0.627058 1.08610i −0.988139 0.153561i \(-0.950926\pi\)
0.361082 0.932534i \(-0.382408\pi\)
\(510\) 0 0
\(511\) 13.1027 33.6447i 0.579631 1.48835i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.3042 + 21.3115i −0.542187 + 0.939095i
\(516\) 0 0
\(517\) 0.264676 0.458433i 0.0116405 0.0201619i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.98150 + 10.3603i 0.262054 + 0.453892i 0.966788 0.255581i \(-0.0822667\pi\)
−0.704733 + 0.709472i \(0.748933\pi\)
\(522\) 0 0
\(523\) 3.15056 5.45693i 0.137764 0.238615i −0.788886 0.614540i \(-0.789342\pi\)
0.926650 + 0.375925i \(0.122675\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.940948 + 1.62977i 0.0409884 + 0.0709939i
\(528\) 0 0
\(529\) 11.4207 19.7813i 0.496554 0.860057i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.4758 + 28.5369i 0.713645 + 1.23607i
\(534\) 0 0
\(535\) −11.4525 −0.495135
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.41948 5.89399i −0.276507 0.253872i
\(540\) 0 0
\(541\) 9.88191 17.1160i 0.424857 0.735873i −0.571550 0.820567i \(-0.693658\pi\)
0.996407 + 0.0846937i \(0.0269912\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.0987 + 24.4197i −0.603923 + 1.04602i
\(546\) 0 0
\(547\) −21.6125 37.4340i −0.924085 1.60056i −0.793026 0.609188i \(-0.791496\pi\)
−0.131059 0.991375i \(-0.541838\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −30.2228 −1.28753
\(552\) 0 0
\(553\) −9.15791 11.4220i −0.389434 0.485713i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0838 + 24.3938i 0.596748 + 1.03360i 0.993298 + 0.115584i \(0.0368740\pi\)
−0.396550 + 0.918013i \(0.629793\pi\)
\(558\) 0 0
\(559\) −19.3137 −0.816884
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.6944 1.08289 0.541445 0.840736i \(-0.317878\pi\)
0.541445 + 0.840736i \(0.317878\pi\)
\(564\) 0 0
\(565\) −22.7951 −0.958998
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.4881 −1.48774 −0.743870 0.668324i \(-0.767012\pi\)
−0.743870 + 0.668324i \(0.767012\pi\)
\(570\) 0 0
\(571\) −21.6824 −0.907378 −0.453689 0.891160i \(-0.649892\pi\)
−0.453689 + 0.891160i \(0.649892\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.862754 0.0359793
\(576\) 0 0
\(577\) −7.60727 13.1762i −0.316695 0.548531i 0.663102 0.748529i \(-0.269240\pi\)
−0.979796 + 0.199998i \(0.935906\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.4326 + 39.6271i −0.640251 + 1.64401i
\(582\) 0 0
\(583\) −1.16111 −0.0480881
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.1924 33.2423i −0.792157 1.37206i −0.924629 0.380869i \(-0.875625\pi\)
0.132472 0.991187i \(-0.457708\pi\)
\(588\) 0 0
\(589\) −1.36606 + 2.36608i −0.0562875 + 0.0974928i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.25559 16.0311i 0.380081 0.658320i −0.610992 0.791637i \(-0.709229\pi\)
0.991074 + 0.133316i \(0.0425626\pi\)
\(594\) 0 0
\(595\) 14.3223 2.19721i 0.587159 0.0900770i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.6825 −0.885924 −0.442962 0.896540i \(-0.646072\pi\)
−0.442962 + 0.896540i \(0.646072\pi\)
\(600\) 0 0
\(601\) 3.95776 + 6.85505i 0.161441 + 0.279623i 0.935386 0.353630i \(-0.115053\pi\)
−0.773945 + 0.633253i \(0.781719\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.95293 + 13.7749i −0.323333 + 0.560029i
\(606\) 0 0
\(607\) 17.9623 + 31.1117i 0.729068 + 1.26278i 0.957277 + 0.289171i \(0.0933797\pi\)
−0.228209 + 0.973612i \(0.573287\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.833539 + 1.44373i −0.0337214 + 0.0584072i
\(612\) 0 0
\(613\) −1.60252 2.77565i −0.0647253 0.112108i 0.831847 0.555005i \(-0.187284\pi\)
−0.896572 + 0.442898i \(0.853950\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.9357 + 27.6015i −0.641549 + 1.11120i 0.343538 + 0.939139i \(0.388374\pi\)
−0.985087 + 0.172056i \(0.944959\pi\)
\(618\) 0 0
\(619\) −10.4863 + 18.1628i −0.421480 + 0.730024i −0.996084 0.0884070i \(-0.971822\pi\)
0.574605 + 0.818431i \(0.305156\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −31.5793 + 4.84464i −1.26520 + 0.194096i
\(624\) 0 0
\(625\) 4.73462 + 8.20060i 0.189385 + 0.328024i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.7102 0.706153
\(630\) 0 0
\(631\) −26.4435 −1.05270 −0.526349 0.850268i \(-0.676440\pi\)
−0.526349 + 0.850268i \(0.676440\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.91266 15.4372i −0.353688 0.612606i
\(636\) 0 0
\(637\) 20.2167 + 18.5618i 0.801016 + 0.735445i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.9809 + 24.2157i −0.552213 + 0.956461i 0.445901 + 0.895082i \(0.352883\pi\)
−0.998115 + 0.0613792i \(0.980450\pi\)
\(642\) 0 0
\(643\) 6.12936 10.6164i 0.241718 0.418669i −0.719485 0.694508i \(-0.755622\pi\)
0.961204 + 0.275839i \(0.0889556\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.49923 + 7.79290i 0.176883 + 0.306371i 0.940811 0.338931i \(-0.110065\pi\)
−0.763928 + 0.645301i \(0.776732\pi\)
\(648\) 0 0
\(649\) −3.76640 + 6.52360i −0.147844 + 0.256074i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.3950 19.7368i −0.445922 0.772359i 0.552194 0.833716i \(-0.313791\pi\)
−0.998116 + 0.0613562i \(0.980457\pi\)
\(654\) 0 0
\(655\) −18.8209 + 32.5987i −0.735393 + 1.27374i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.3311 33.4824i −0.753033 1.30429i −0.946347 0.323154i \(-0.895257\pi\)
0.193314 0.981137i \(-0.438076\pi\)
\(660\) 0 0
\(661\) −11.5080 −0.447609 −0.223804 0.974634i \(-0.571848\pi\)
−0.223804 + 0.974634i \(0.571848\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.1590 + 16.4124i 0.510286 + 0.636444i
\(666\) 0 0
\(667\) −1.27362 + 2.20597i −0.0493147 + 0.0854156i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.35511 + 11.0074i −0.245336 + 0.424935i
\(672\) 0 0
\(673\) −10.6642 18.4709i −0.411075 0.712002i 0.583933 0.811802i \(-0.301513\pi\)
−0.995008 + 0.0997997i \(0.968180\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.7599 −1.06690 −0.533449 0.845832i \(-0.679104\pi\)
−0.533449 + 0.845832i \(0.679104\pi\)
\(678\) 0 0
\(679\) −11.2536 + 28.8966i −0.431875 + 1.10895i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.66854 15.0143i −0.331692 0.574508i 0.651151 0.758948i \(-0.274286\pi\)
−0.982844 + 0.184440i \(0.940953\pi\)
\(684\) 0 0
\(685\) 30.2194 1.15462
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.65664 0.139307
\(690\) 0 0
\(691\) −39.6046 −1.50663 −0.753315 0.657660i \(-0.771547\pi\)
−0.753315 + 0.657660i \(0.771547\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.92158 −0.0728895
\(696\) 0 0
\(697\) −27.3461 −1.03581
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.28469 −0.275139 −0.137570 0.990492i \(-0.543929\pi\)
−0.137570 + 0.990492i \(0.543929\pi\)
\(702\) 0 0
\(703\) 12.8558 + 22.2668i 0.484864 + 0.839809i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.1377 + 2.16888i −0.531701 + 0.0815691i
\(708\) 0 0
\(709\) 12.0108 0.451075 0.225538 0.974234i \(-0.427586\pi\)
0.225538 + 0.974234i \(0.427586\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.115134 + 0.199418i 0.00431181 + 0.00746827i
\(714\) 0 0
\(715\) −4.10800 + 7.11526i −0.153630 + 0.266096i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.15819 + 3.73809i −0.0804868 + 0.139407i −0.903459 0.428674i \(-0.858981\pi\)
0.822972 + 0.568081i \(0.192314\pi\)
\(720\) 0 0
\(721\) 14.0375 36.0449i 0.522783 1.34238i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.8642 0.514903
\(726\) 0 0
\(727\) −10.2483 17.7506i −0.380090 0.658334i 0.610985 0.791642i \(-0.290774\pi\)
−0.991075 + 0.133308i \(0.957440\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.01411 13.8808i 0.296413 0.513402i
\(732\) 0 0
\(733\) −12.6661 21.9383i −0.467833 0.810310i 0.531491 0.847064i \(-0.321632\pi\)
−0.999324 + 0.0367533i \(0.988298\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.86356 + 10.1560i −0.215987 + 0.374100i
\(738\) 0 0
\(739\) 6.63391 + 11.4903i 0.244032 + 0.422676i 0.961859 0.273545i \(-0.0881964\pi\)
−0.717827 + 0.696222i \(0.754863\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.6116 39.1644i 0.829538 1.43680i −0.0688624 0.997626i \(-0.521937\pi\)
0.898401 0.439176i \(-0.144730\pi\)
\(744\) 0 0
\(745\) −14.8608 + 25.7397i −0.544459 + 0.943031i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.7940 2.72981i 0.650178 0.0997449i
\(750\) 0 0
\(751\) −14.1898 24.5775i −0.517795 0.896847i −0.999786 0.0206709i \(-0.993420\pi\)
0.481992 0.876176i \(-0.339914\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.6435 −0.933263
\(756\) 0 0
\(757\) 5.08483 0.184811 0.0924056 0.995721i \(-0.470544\pi\)
0.0924056 + 0.995721i \(0.470544\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.8612 + 32.6686i 0.683720 + 1.18424i 0.973837 + 0.227246i \(0.0729722\pi\)
−0.290118 + 0.956991i \(0.593694\pi\)
\(762\) 0 0
\(763\) 16.0848 41.3020i 0.582310 1.49523i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.8614 20.5446i 0.428292 0.741823i
\(768\) 0 0
\(769\) 11.8729 20.5644i 0.428147 0.741572i −0.568562 0.822641i \(-0.692500\pi\)
0.996709 + 0.0810688i \(0.0258333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5347 33.8351i −0.702614 1.21696i −0.967546 0.252696i \(-0.918683\pi\)
0.264932 0.964267i \(-0.414650\pi\)
\(774\) 0 0
\(775\) 0.626657 1.08540i 0.0225102 0.0389888i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −19.8504 34.3819i −0.711214 1.23186i
\(780\) 0 0
\(781\) −5.27011 + 9.12810i −0.188579 + 0.326629i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.4697 19.8661i −0.409370 0.709050i
\(786\) 0 0
\(787\) −3.80915 −0.135782 −0.0678908 0.997693i \(-0.521627\pi\)
−0.0678908 + 0.997693i \(0.521627\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 35.4173 5.43342i 1.25929 0.193190i
\(792\) 0 0
\(793\) 20.0140 34.6653i 0.710718 1.23100i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.8239 18.7476i 0.383404 0.664075i −0.608143 0.793828i \(-0.708085\pi\)
0.991546 + 0.129753i \(0.0414184\pi\)