Properties

Label 3024.2.q.k.2305.7
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.7
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.k.2881.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.170100 + 0.294622i) q^{5} +(2.63360 + 0.253251i) q^{7} +O(q^{10})\) \(q+(0.170100 + 0.294622i) q^{5} +(2.63360 + 0.253251i) q^{7} +(0.335794 - 0.581612i) q^{11} +(1.62370 - 2.81233i) q^{13} +(1.10014 + 1.90550i) q^{17} +(-0.242085 + 0.419303i) q^{19} +(-2.09495 - 3.62856i) q^{23} +(2.44213 - 4.22990i) q^{25} +(-0.478868 - 0.829424i) q^{29} -2.08263 q^{31} +(0.373363 + 0.818995i) q^{35} +(4.81613 - 8.34178i) q^{37} +(3.90207 - 6.75858i) q^{41} +(3.66119 + 6.34136i) q^{43} -2.69901 q^{47} +(6.87173 + 1.33392i) q^{49} +(6.12335 + 10.6059i) q^{53} +0.228474 q^{55} -4.94297 q^{59} -3.52119 q^{61} +1.10477 q^{65} -12.3202 q^{67} -5.57304 q^{71} +(-3.71686 - 6.43779i) q^{73} +(1.03164 - 1.44669i) q^{77} +10.0127 q^{79} +(2.47376 + 4.28468i) q^{83} +(-0.374269 + 0.648252i) q^{85} +(8.52177 - 14.7601i) q^{89} +(4.98840 - 6.99536i) q^{91} -0.164714 q^{95} +(4.23657 + 7.33795i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.170100 + 0.294622i 0.0760711 + 0.131759i 0.901552 0.432672i \(-0.142429\pi\)
−0.825480 + 0.564431i \(0.809096\pi\)
\(6\) 0 0
\(7\) 2.63360 + 0.253251i 0.995408 + 0.0957197i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.335794 0.581612i 0.101246 0.175363i −0.810952 0.585112i \(-0.801051\pi\)
0.912198 + 0.409749i \(0.134384\pi\)
\(12\) 0 0
\(13\) 1.62370 2.81233i 0.450333 0.780000i −0.548073 0.836430i \(-0.684639\pi\)
0.998407 + 0.0564303i \(0.0179719\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.10014 + 1.90550i 0.266824 + 0.462152i 0.968040 0.250796i \(-0.0806925\pi\)
−0.701216 + 0.712949i \(0.747359\pi\)
\(18\) 0 0
\(19\) −0.242085 + 0.419303i −0.0555380 + 0.0961946i −0.892458 0.451131i \(-0.851021\pi\)
0.836920 + 0.547326i \(0.184354\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.09495 3.62856i −0.436827 0.756607i 0.560616 0.828076i \(-0.310565\pi\)
−0.997443 + 0.0714692i \(0.977231\pi\)
\(24\) 0 0
\(25\) 2.44213 4.22990i 0.488426 0.845979i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.478868 0.829424i −0.0889235 0.154020i 0.818133 0.575029i \(-0.195009\pi\)
−0.907056 + 0.421009i \(0.861676\pi\)
\(30\) 0 0
\(31\) −2.08263 −0.374052 −0.187026 0.982355i \(-0.559885\pi\)
−0.187026 + 0.982355i \(0.559885\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.373363 + 0.818995i 0.0631098 + 0.138435i
\(36\) 0 0
\(37\) 4.81613 8.34178i 0.791767 1.37138i −0.133105 0.991102i \(-0.542495\pi\)
0.924872 0.380278i \(-0.124172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.90207 6.75858i 0.609400 1.05551i −0.381939 0.924188i \(-0.624744\pi\)
0.991339 0.131325i \(-0.0419231\pi\)
\(42\) 0 0
\(43\) 3.66119 + 6.34136i 0.558326 + 0.967048i 0.997636 + 0.0687132i \(0.0218893\pi\)
−0.439311 + 0.898335i \(0.644777\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.69901 −0.393692 −0.196846 0.980434i \(-0.563070\pi\)
−0.196846 + 0.980434i \(0.563070\pi\)
\(48\) 0 0
\(49\) 6.87173 + 1.33392i 0.981675 + 0.190560i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.12335 + 10.6059i 0.841107 + 1.45684i 0.888960 + 0.457985i \(0.151429\pi\)
−0.0478535 + 0.998854i \(0.515238\pi\)
\(54\) 0 0
\(55\) 0.228474 0.0308075
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.94297 −0.643520 −0.321760 0.946821i \(-0.604274\pi\)
−0.321760 + 0.946821i \(0.604274\pi\)
\(60\) 0 0
\(61\) −3.52119 −0.450842 −0.225421 0.974261i \(-0.572376\pi\)
−0.225421 + 0.974261i \(0.572376\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.10477 0.137029
\(66\) 0 0
\(67\) −12.3202 −1.50516 −0.752579 0.658502i \(-0.771190\pi\)
−0.752579 + 0.658502i \(0.771190\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.57304 −0.661398 −0.330699 0.943736i \(-0.607285\pi\)
−0.330699 + 0.943736i \(0.607285\pi\)
\(72\) 0 0
\(73\) −3.71686 6.43779i −0.435026 0.753487i 0.562272 0.826952i \(-0.309927\pi\)
−0.997298 + 0.0734657i \(0.976594\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.03164 1.44669i 0.117566 0.164866i
\(78\) 0 0
\(79\) 10.0127 1.12652 0.563260 0.826279i \(-0.309547\pi\)
0.563260 + 0.826279i \(0.309547\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.47376 + 4.28468i 0.271530 + 0.470305i 0.969254 0.246063i \(-0.0791369\pi\)
−0.697723 + 0.716367i \(0.745804\pi\)
\(84\) 0 0
\(85\) −0.374269 + 0.648252i −0.0405951 + 0.0703128i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.52177 14.7601i 0.903306 1.56457i 0.0801310 0.996784i \(-0.474466\pi\)
0.823175 0.567788i \(-0.192201\pi\)
\(90\) 0 0
\(91\) 4.98840 6.99536i 0.522927 0.733313i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.164714 −0.0168993
\(96\) 0 0
\(97\) 4.23657 + 7.33795i 0.430159 + 0.745056i 0.996887 0.0788485i \(-0.0251243\pi\)
−0.566728 + 0.823905i \(0.691791\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.28693 + 3.96107i −0.227558 + 0.394141i −0.957084 0.289812i \(-0.906407\pi\)
0.729526 + 0.683953i \(0.239741\pi\)
\(102\) 0 0
\(103\) −0.903563 1.56502i −0.0890307 0.154206i 0.818071 0.575117i \(-0.195044\pi\)
−0.907102 + 0.420912i \(0.861710\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.88188 6.72361i 0.375275 0.649996i −0.615093 0.788454i \(-0.710882\pi\)
0.990368 + 0.138459i \(0.0442149\pi\)
\(108\) 0 0
\(109\) −1.07178 1.85638i −0.102658 0.177809i 0.810121 0.586263i \(-0.199401\pi\)
−0.912779 + 0.408454i \(0.866068\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.91006 13.7006i 0.744116 1.28885i −0.206491 0.978449i \(-0.566204\pi\)
0.950607 0.310398i \(-0.100462\pi\)
\(114\) 0 0
\(115\) 0.712702 1.23444i 0.0664598 0.115112i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.41477 + 5.29695i 0.221362 + 0.485571i
\(120\) 0 0
\(121\) 5.27449 + 9.13568i 0.479499 + 0.830516i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.36263 0.300763
\(126\) 0 0
\(127\) 13.8820 1.23183 0.615915 0.787812i \(-0.288786\pi\)
0.615915 + 0.787812i \(0.288786\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.08769 + 3.61599i 0.182402 + 0.315930i 0.942698 0.333647i \(-0.108279\pi\)
−0.760296 + 0.649577i \(0.774946\pi\)
\(132\) 0 0
\(133\) −0.743743 + 1.04297i −0.0644907 + 0.0904369i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.38043 + 11.0512i −0.545117 + 0.944170i 0.453483 + 0.891265i \(0.350181\pi\)
−0.998600 + 0.0529051i \(0.983152\pi\)
\(138\) 0 0
\(139\) −5.95986 + 10.3228i −0.505509 + 0.875567i 0.494471 + 0.869194i \(0.335362\pi\)
−0.999980 + 0.00637264i \(0.997972\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.09046 1.88873i −0.0911885 0.157943i
\(144\) 0 0
\(145\) 0.162911 0.282170i 0.0135290 0.0234329i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.37548 9.31060i −0.440376 0.762754i 0.557341 0.830284i \(-0.311822\pi\)
−0.997717 + 0.0675295i \(0.978488\pi\)
\(150\) 0 0
\(151\) −1.29050 + 2.23521i −0.105019 + 0.181899i −0.913746 0.406286i \(-0.866824\pi\)
0.808727 + 0.588184i \(0.200157\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.354256 0.613589i −0.0284545 0.0492846i
\(156\) 0 0
\(157\) 7.99693 0.638224 0.319112 0.947717i \(-0.396615\pi\)
0.319112 + 0.947717i \(0.396615\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.59833 10.0867i −0.362399 0.794946i
\(162\) 0 0
\(163\) −4.13306 + 7.15868i −0.323727 + 0.560711i −0.981254 0.192720i \(-0.938269\pi\)
0.657527 + 0.753431i \(0.271602\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.99384 15.5778i 0.695964 1.20544i −0.273891 0.961761i \(-0.588311\pi\)
0.969855 0.243684i \(-0.0783560\pi\)
\(168\) 0 0
\(169\) 1.22720 + 2.12557i 0.0944000 + 0.163506i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.9983 1.29236 0.646179 0.763186i \(-0.276366\pi\)
0.646179 + 0.763186i \(0.276366\pi\)
\(174\) 0 0
\(175\) 7.50283 10.5214i 0.567161 0.795343i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.65073 16.7156i −0.721329 1.24938i −0.960467 0.278393i \(-0.910198\pi\)
0.239138 0.970986i \(-0.423135\pi\)
\(180\) 0 0
\(181\) 21.9640 1.63257 0.816287 0.577646i \(-0.196029\pi\)
0.816287 + 0.577646i \(0.196029\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.27690 0.240922
\(186\) 0 0
\(187\) 1.47768 0.108059
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.65744 0.481716 0.240858 0.970560i \(-0.422571\pi\)
0.240858 + 0.970560i \(0.422571\pi\)
\(192\) 0 0
\(193\) 6.34906 0.457015 0.228508 0.973542i \(-0.426615\pi\)
0.228508 + 0.973542i \(0.426615\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.8112 −1.69648 −0.848239 0.529614i \(-0.822337\pi\)
−0.848239 + 0.529614i \(0.822337\pi\)
\(198\) 0 0
\(199\) 10.4771 + 18.1468i 0.742701 + 1.28640i 0.951261 + 0.308386i \(0.0997887\pi\)
−0.208561 + 0.978009i \(0.566878\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.05110 2.30565i −0.0737725 0.161825i
\(204\) 0 0
\(205\) 2.65497 0.185431
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.162581 + 0.281599i 0.0112460 + 0.0194786i
\(210\) 0 0
\(211\) 6.32431 10.9540i 0.435384 0.754106i −0.561943 0.827176i \(-0.689946\pi\)
0.997327 + 0.0730693i \(0.0232794\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.24554 + 2.15733i −0.0849448 + 0.147129i
\(216\) 0 0
\(217\) −5.48482 0.527427i −0.372334 0.0358041i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.14520 0.480638
\(222\) 0 0
\(223\) 1.34432 + 2.32843i 0.0900225 + 0.155924i 0.907520 0.420008i \(-0.137973\pi\)
−0.817498 + 0.575932i \(0.804639\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.9942 + 24.2387i −0.928829 + 1.60878i −0.143546 + 0.989644i \(0.545850\pi\)
−0.785284 + 0.619136i \(0.787483\pi\)
\(228\) 0 0
\(229\) −12.2695 21.2514i −0.810790 1.40433i −0.912312 0.409497i \(-0.865704\pi\)
0.101521 0.994833i \(-0.467629\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.61844 7.99938i 0.302564 0.524057i −0.674152 0.738593i \(-0.735491\pi\)
0.976716 + 0.214536i \(0.0688240\pi\)
\(234\) 0 0
\(235\) −0.459103 0.795189i −0.0299486 0.0518724i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.0126 24.2706i 0.906403 1.56994i 0.0873796 0.996175i \(-0.472151\pi\)
0.819023 0.573760i \(-0.194516\pi\)
\(240\) 0 0
\(241\) −9.91411 + 17.1717i −0.638624 + 1.10613i 0.347111 + 0.937824i \(0.387163\pi\)
−0.985735 + 0.168305i \(0.946171\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.775879 + 2.25146i 0.0495691 + 0.143841i
\(246\) 0 0
\(247\) 0.786145 + 1.36164i 0.0500212 + 0.0866393i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.5759 1.04626 0.523132 0.852252i \(-0.324764\pi\)
0.523132 + 0.852252i \(0.324764\pi\)
\(252\) 0 0
\(253\) −2.81389 −0.176907
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.64750 + 6.31766i 0.227525 + 0.394085i 0.957074 0.289844i \(-0.0936033\pi\)
−0.729549 + 0.683929i \(0.760270\pi\)
\(258\) 0 0
\(259\) 14.7963 20.7493i 0.919399 1.28930i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.3899 23.1920i 0.825657 1.43008i −0.0757586 0.997126i \(-0.524138\pi\)
0.901416 0.432954i \(-0.142529\pi\)
\(264\) 0 0
\(265\) −2.08316 + 3.60815i −0.127968 + 0.221647i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.1791 17.6307i −0.620630 1.07496i −0.989369 0.145429i \(-0.953544\pi\)
0.368739 0.929533i \(-0.379790\pi\)
\(270\) 0 0
\(271\) −5.45842 + 9.45427i −0.331576 + 0.574306i −0.982821 0.184561i \(-0.940914\pi\)
0.651245 + 0.758867i \(0.274247\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.64011 2.84075i −0.0989021 0.171303i
\(276\) 0 0
\(277\) −8.83689 + 15.3059i −0.530957 + 0.919645i 0.468390 + 0.883522i \(0.344834\pi\)
−0.999347 + 0.0361231i \(0.988499\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.17614 12.4294i −0.428092 0.741478i 0.568611 0.822606i \(-0.307481\pi\)
−0.996704 + 0.0811286i \(0.974148\pi\)
\(282\) 0 0
\(283\) −9.72841 −0.578294 −0.289147 0.957285i \(-0.593372\pi\)
−0.289147 + 0.957285i \(0.593372\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.9881 16.8112i 0.707636 0.992334i
\(288\) 0 0
\(289\) 6.07937 10.5298i 0.357610 0.619399i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.26345 + 10.8486i −0.365915 + 0.633783i −0.988923 0.148433i \(-0.952577\pi\)
0.623008 + 0.782216i \(0.285911\pi\)
\(294\) 0 0
\(295\) −0.840799 1.45631i −0.0489532 0.0847895i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.6063 −0.786871
\(300\) 0 0
\(301\) 8.03616 + 17.6278i 0.463196 + 1.01605i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.598954 1.03742i −0.0342960 0.0594025i
\(306\) 0 0
\(307\) −25.8747 −1.47675 −0.738375 0.674391i \(-0.764406\pi\)
−0.738375 + 0.674391i \(0.764406\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.4001 1.61042 0.805211 0.592988i \(-0.202052\pi\)
0.805211 + 0.592988i \(0.202052\pi\)
\(312\) 0 0
\(313\) −12.2015 −0.689668 −0.344834 0.938664i \(-0.612065\pi\)
−0.344834 + 0.938664i \(0.612065\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.95219 0.221977 0.110988 0.993822i \(-0.464598\pi\)
0.110988 + 0.993822i \(0.464598\pi\)
\(318\) 0 0
\(319\) −0.643204 −0.0360125
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.06531 −0.0592754
\(324\) 0 0
\(325\) −7.93058 13.7362i −0.439909 0.761945i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.10813 0.683527i −0.391884 0.0376841i
\(330\) 0 0
\(331\) 8.88286 0.488246 0.244123 0.969744i \(-0.421500\pi\)
0.244123 + 0.969744i \(0.421500\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.09567 3.62981i −0.114499 0.198318i
\(336\) 0 0
\(337\) −11.9741 + 20.7397i −0.652269 + 1.12976i 0.330302 + 0.943875i \(0.392849\pi\)
−0.982571 + 0.185887i \(0.940484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.699335 + 1.21128i −0.0378711 + 0.0655947i
\(342\) 0 0
\(343\) 17.7596 + 5.25329i 0.958928 + 0.283651i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.49059 0.509481 0.254741 0.967009i \(-0.418010\pi\)
0.254741 + 0.967009i \(0.418010\pi\)
\(348\) 0 0
\(349\) 4.26145 + 7.38104i 0.228110 + 0.395098i 0.957248 0.289269i \(-0.0934121\pi\)
−0.729138 + 0.684367i \(0.760079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.5872 + 32.1940i −0.989297 + 1.71351i −0.368279 + 0.929715i \(0.620053\pi\)
−0.621018 + 0.783797i \(0.713281\pi\)
\(354\) 0 0
\(355\) −0.947975 1.64194i −0.0503133 0.0871451i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.30964 + 9.19657i −0.280232 + 0.485376i −0.971442 0.237278i \(-0.923745\pi\)
0.691210 + 0.722654i \(0.257078\pi\)
\(360\) 0 0
\(361\) 9.38279 + 16.2515i 0.493831 + 0.855340i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.26448 2.19014i 0.0661857 0.114637i
\(366\) 0 0
\(367\) 11.1799 19.3642i 0.583586 1.01080i −0.411464 0.911426i \(-0.634982\pi\)
0.995050 0.0993751i \(-0.0316844\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.4405 + 29.4826i 0.697796 + 1.53066i
\(372\) 0 0
\(373\) 8.79264 + 15.2293i 0.455266 + 0.788544i 0.998703 0.0509059i \(-0.0162109\pi\)
−0.543438 + 0.839450i \(0.682878\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.11015 −0.160181
\(378\) 0 0
\(379\) −10.0443 −0.515939 −0.257969 0.966153i \(-0.583053\pi\)
−0.257969 + 0.966153i \(0.583053\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.93619 + 6.81768i 0.201130 + 0.348367i 0.948893 0.315599i \(-0.102205\pi\)
−0.747763 + 0.663966i \(0.768872\pi\)
\(384\) 0 0
\(385\) 0.601710 + 0.0578612i 0.0306660 + 0.00294888i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.82417 + 3.15956i −0.0924893 + 0.160196i −0.908558 0.417759i \(-0.862816\pi\)
0.816069 + 0.577955i \(0.196149\pi\)
\(390\) 0 0
\(391\) 4.60949 7.98387i 0.233112 0.403762i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.70317 + 2.94997i 0.0856956 + 0.148429i
\(396\) 0 0
\(397\) 6.56071 11.3635i 0.329272 0.570317i −0.653095 0.757276i \(-0.726530\pi\)
0.982368 + 0.186959i \(0.0598632\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.71872 + 9.90511i 0.285579 + 0.494638i 0.972749 0.231859i \(-0.0744807\pi\)
−0.687170 + 0.726496i \(0.741147\pi\)
\(402\) 0 0
\(403\) −3.38157 + 5.85705i −0.168448 + 0.291760i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.23445 5.60224i −0.160326 0.277693i
\(408\) 0 0
\(409\) −18.4821 −0.913882 −0.456941 0.889497i \(-0.651055\pi\)
−0.456941 + 0.889497i \(0.651055\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13.0178 1.25181i −0.640565 0.0615975i
\(414\) 0 0
\(415\) −0.841574 + 1.45765i −0.0413112 + 0.0715531i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.6290 + 18.4099i −0.519260 + 0.899385i 0.480489 + 0.877001i \(0.340459\pi\)
−0.999749 + 0.0223843i \(0.992874\pi\)
\(420\) 0 0
\(421\) −8.60478 14.9039i −0.419371 0.726373i 0.576505 0.817094i \(-0.304416\pi\)
−0.995876 + 0.0907211i \(0.971083\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.7468 0.521295
\(426\) 0 0
\(427\) −9.27341 0.891743i −0.448772 0.0431545i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.02962 + 5.24745i 0.145931 + 0.252761i 0.929720 0.368267i \(-0.120049\pi\)
−0.783789 + 0.621028i \(0.786715\pi\)
\(432\) 0 0
\(433\) −17.6963 −0.850432 −0.425216 0.905092i \(-0.639802\pi\)
−0.425216 + 0.905092i \(0.639802\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.02862 0.0970421
\(438\) 0 0
\(439\) −27.3373 −1.30474 −0.652370 0.757901i \(-0.726225\pi\)
−0.652370 + 0.757901i \(0.726225\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.91771 0.0911132 0.0455566 0.998962i \(-0.485494\pi\)
0.0455566 + 0.998962i \(0.485494\pi\)
\(444\) 0 0
\(445\) 5.79822 0.274862
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.3249 −1.33674 −0.668368 0.743831i \(-0.733007\pi\)
−0.668368 + 0.743831i \(0.733007\pi\)
\(450\) 0 0
\(451\) −2.62058 4.53898i −0.123398 0.213732i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.90951 + 0.279782i 0.136400 + 0.0131164i
\(456\) 0 0
\(457\) 13.0085 0.608514 0.304257 0.952590i \(-0.401592\pi\)
0.304257 + 0.952590i \(0.401592\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.8278 + 20.4863i 0.550875 + 0.954144i 0.998212 + 0.0597782i \(0.0190393\pi\)
−0.447336 + 0.894366i \(0.647627\pi\)
\(462\) 0 0
\(463\) 20.2403 35.0572i 0.940647 1.62925i 0.176406 0.984317i \(-0.443553\pi\)
0.764241 0.644931i \(-0.223114\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.6010 + 32.2179i −0.860753 + 1.49087i 0.0104492 + 0.999945i \(0.496674\pi\)
−0.871203 + 0.490923i \(0.836659\pi\)
\(468\) 0 0
\(469\) −32.4466 3.12011i −1.49825 0.144073i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.91761 0.226112
\(474\) 0 0
\(475\) 1.18240 + 2.04799i 0.0542525 + 0.0939680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.2918 + 35.1463i −0.927154 + 1.60588i −0.139094 + 0.990279i \(0.544419\pi\)
−0.788060 + 0.615598i \(0.788914\pi\)
\(480\) 0 0
\(481\) −15.6399 27.0891i −0.713118 1.23516i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.44128 + 2.49637i −0.0654452 + 0.113354i
\(486\) 0 0
\(487\) −10.5255 18.2307i −0.476956 0.826113i 0.522695 0.852520i \(-0.324927\pi\)
−0.999651 + 0.0264072i \(0.991593\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.97925 + 8.62432i −0.224711 + 0.389210i −0.956233 0.292608i \(-0.905477\pi\)
0.731522 + 0.681818i \(0.238810\pi\)
\(492\) 0 0
\(493\) 1.05365 1.82497i 0.0474538 0.0821924i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.6772 1.41138i −0.658361 0.0633088i
\(498\) 0 0
\(499\) 11.3150 + 19.5982i 0.506531 + 0.877337i 0.999971 + 0.00755788i \(0.00240577\pi\)
−0.493440 + 0.869780i \(0.664261\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −43.4520 −1.93743 −0.968714 0.248179i \(-0.920168\pi\)
−0.968714 + 0.248179i \(0.920168\pi\)
\(504\) 0 0
\(505\) −1.55602 −0.0692422
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.77739 8.27468i −0.211754 0.366769i 0.740510 0.672046i \(-0.234584\pi\)
−0.952264 + 0.305277i \(0.901251\pi\)
\(510\) 0 0
\(511\) −8.15836 17.8959i −0.360905 0.791667i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.307392 0.532419i 0.0135453 0.0234612i
\(516\) 0 0
\(517\) −0.906312 + 1.56978i −0.0398596 + 0.0690388i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.581462 1.00712i −0.0254743 0.0441228i 0.853007 0.521899i \(-0.174776\pi\)
−0.878482 + 0.477776i \(0.841443\pi\)
\(522\) 0 0
\(523\) 3.20567 5.55239i 0.140174 0.242789i −0.787388 0.616458i \(-0.788567\pi\)
0.927562 + 0.373669i \(0.121900\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.29119 3.96846i −0.0998059 0.172869i
\(528\) 0 0
\(529\) 2.72237 4.71528i 0.118364 0.205012i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.6716 21.9478i −0.548866 0.950665i
\(534\) 0 0
\(535\) 2.64123 0.114190
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.08331 3.54876i 0.132808 0.152856i
\(540\) 0 0
\(541\) −7.37443 + 12.7729i −0.317052 + 0.549150i −0.979871 0.199629i \(-0.936026\pi\)
0.662820 + 0.748779i \(0.269360\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.364621 0.631542i 0.0156187 0.0270523i
\(546\) 0 0
\(547\) −6.57905 11.3952i −0.281300 0.487226i 0.690405 0.723423i \(-0.257432\pi\)
−0.971705 + 0.236197i \(0.924099\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.463706 0.0197545
\(552\) 0 0
\(553\) 26.3696 + 2.53573i 1.12135 + 0.107830i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.1869 + 21.1083i 0.516374 + 0.894385i 0.999819 + 0.0190111i \(0.00605177\pi\)
−0.483446 + 0.875374i \(0.660615\pi\)
\(558\) 0 0
\(559\) 23.7787 1.00573
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.11965 −0.131478 −0.0657388 0.997837i \(-0.520940\pi\)
−0.0657388 + 0.997837i \(0.520940\pi\)
\(564\) 0 0
\(565\) 5.38201 0.226423
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.4769 0.900358 0.450179 0.892938i \(-0.351360\pi\)
0.450179 + 0.892938i \(0.351360\pi\)
\(570\) 0 0
\(571\) −33.0460 −1.38293 −0.691466 0.722409i \(-0.743035\pi\)
−0.691466 + 0.722409i \(0.743035\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −20.4646 −0.853432
\(576\) 0 0
\(577\) 0.904826 + 1.56720i 0.0376684 + 0.0652436i 0.884245 0.467023i \(-0.154674\pi\)
−0.846577 + 0.532267i \(0.821340\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.42980 + 11.9106i 0.225266 + 0.494136i
\(582\) 0 0
\(583\) 8.22473 0.340633
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.65901 + 2.87349i 0.0684746 + 0.118601i 0.898230 0.439526i \(-0.144853\pi\)
−0.829755 + 0.558127i \(0.811520\pi\)
\(588\) 0 0
\(589\) 0.504173 0.873253i 0.0207741 0.0359818i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.3784 + 26.6362i −0.631516 + 1.09382i 0.355726 + 0.934590i \(0.384234\pi\)
−0.987242 + 0.159228i \(0.949100\pi\)
\(594\) 0 0
\(595\) −1.14985 + 1.61246i −0.0471391 + 0.0661042i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13.9705 0.570817 0.285409 0.958406i \(-0.407871\pi\)
0.285409 + 0.958406i \(0.407871\pi\)
\(600\) 0 0
\(601\) −7.50432 12.9979i −0.306108 0.530194i 0.671400 0.741096i \(-0.265693\pi\)
−0.977507 + 0.210901i \(0.932360\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.79438 + 3.10796i −0.0729519 + 0.126356i
\(606\) 0 0
\(607\) 11.6644 + 20.2034i 0.473444 + 0.820030i 0.999538 0.0303969i \(-0.00967712\pi\)
−0.526093 + 0.850427i \(0.676344\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.38239 + 7.59052i −0.177292 + 0.307080i
\(612\) 0 0
\(613\) 22.3374 + 38.6895i 0.902198 + 1.56265i 0.824635 + 0.565666i \(0.191381\pi\)
0.0775635 + 0.996987i \(0.475286\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.18488 2.05227i 0.0477013 0.0826212i −0.841189 0.540741i \(-0.818144\pi\)
0.888890 + 0.458120i \(0.151477\pi\)
\(618\) 0 0
\(619\) −11.3863 + 19.7217i −0.457655 + 0.792682i −0.998837 0.0482236i \(-0.984644\pi\)
0.541181 + 0.840906i \(0.317977\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 26.1810 36.7142i 1.04892 1.47092i
\(624\) 0 0
\(625\) −11.6387 20.1588i −0.465547 0.806351i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.1937 0.845049
\(630\) 0 0
\(631\) −17.8652 −0.711201 −0.355600 0.934638i \(-0.615724\pi\)
−0.355600 + 0.934638i \(0.615724\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.36133 + 4.08995i 0.0937067 + 0.162305i
\(636\) 0 0
\(637\) 14.9091 17.1597i 0.590718 0.679891i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.7900 + 22.1529i −0.505175 + 0.874988i 0.494808 + 0.869003i \(0.335239\pi\)
−0.999982 + 0.00598543i \(0.998095\pi\)
\(642\) 0 0
\(643\) −7.99334 + 13.8449i −0.315227 + 0.545989i −0.979486 0.201514i \(-0.935414\pi\)
0.664259 + 0.747503i \(0.268747\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.47306 + 12.9437i 0.293796 + 0.508870i 0.974704 0.223499i \(-0.0717479\pi\)
−0.680908 + 0.732369i \(0.738415\pi\)
\(648\) 0 0
\(649\) −1.65982 + 2.87489i −0.0651536 + 0.112849i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.82885 8.36381i −0.188967 0.327301i 0.755939 0.654642i \(-0.227181\pi\)
−0.944906 + 0.327341i \(0.893847\pi\)
\(654\) 0 0
\(655\) −0.710233 + 1.23016i −0.0277511 + 0.0480663i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.80353 + 16.9802i 0.381891 + 0.661455i 0.991333 0.131376i \(-0.0419396\pi\)
−0.609441 + 0.792831i \(0.708606\pi\)
\(660\) 0 0
\(661\) −10.2655 −0.399281 −0.199641 0.979869i \(-0.563977\pi\)
−0.199641 + 0.979869i \(0.563977\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.433792 0.0417140i −0.0168217 0.00161760i
\(666\) 0 0
\(667\) −2.00641 + 3.47520i −0.0776885 + 0.134560i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.18239 + 2.04797i −0.0456458 + 0.0790608i
\(672\) 0 0
\(673\) −17.1584 29.7191i −0.661406 1.14559i −0.980246 0.197780i \(-0.936627\pi\)
0.318840 0.947808i \(-0.396707\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.47419 −0.287256 −0.143628 0.989632i \(-0.545877\pi\)
−0.143628 + 0.989632i \(0.545877\pi\)
\(678\) 0 0
\(679\) 9.29910 + 20.3982i 0.356867 + 0.782810i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.1577 31.4501i −0.694786 1.20340i −0.970253 0.242094i \(-0.922166\pi\)
0.275467 0.961310i \(-0.411167\pi\)
\(684\) 0 0
\(685\) −4.34125 −0.165871
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 39.7699 1.51511
\(690\) 0 0
\(691\) −50.9624 −1.93870 −0.969350 0.245684i \(-0.920987\pi\)
−0.969350 + 0.245684i \(0.920987\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.05509 −0.153818
\(696\) 0 0
\(697\) 17.1713 0.650410
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −36.6075 −1.38265 −0.691324 0.722545i \(-0.742972\pi\)
−0.691324 + 0.722545i \(0.742972\pi\)
\(702\) 0 0
\(703\) 2.33182 + 4.03883i 0.0879463 + 0.152327i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.02600 + 9.85272i −0.264240 + 0.370550i
\(708\) 0 0
\(709\) −5.87578 −0.220670 −0.110335 0.993894i \(-0.535192\pi\)
−0.110335 + 0.993894i \(0.535192\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.36301 + 7.55695i 0.163396 + 0.283010i
\(714\) 0 0
\(715\) 0.370973 0.642545i 0.0138736 0.0240298i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.09642 + 14.0234i −0.301945 + 0.522985i −0.976577 0.215170i \(-0.930969\pi\)
0.674631 + 0.738155i \(0.264303\pi\)
\(720\) 0 0
\(721\) −1.98328 4.35046i −0.0738614 0.162020i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.67783 −0.173730
\(726\) 0 0
\(727\) 22.8771 + 39.6243i 0.848464 + 1.46958i 0.882578 + 0.470166i \(0.155806\pi\)
−0.0341138 + 0.999418i \(0.510861\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.05565 + 13.9528i −0.297949 + 0.516063i
\(732\) 0 0
\(733\) −13.5916 23.5414i −0.502019 0.869522i −0.999997 0.00233276i \(-0.999257\pi\)
0.497978 0.867189i \(-0.334076\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.13706 + 7.16560i −0.152391 + 0.263948i
\(738\) 0 0
\(739\) −12.1738 21.0856i −0.447821 0.775648i 0.550423 0.834886i \(-0.314466\pi\)
−0.998244 + 0.0592377i \(0.981133\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.0683178 + 0.118330i −0.00250634 + 0.00434110i −0.867276 0.497828i \(-0.834131\pi\)
0.864770 + 0.502169i \(0.167464\pi\)
\(744\) 0 0
\(745\) 1.82874 3.16747i 0.0669998 0.116047i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.9261 16.7242i 0.435769 0.611090i
\(750\) 0 0
\(751\) 3.71446 + 6.43364i 0.135543 + 0.234767i 0.925805 0.378002i \(-0.123389\pi\)
−0.790262 + 0.612769i \(0.790056\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.878055 −0.0319557
\(756\) 0 0
\(757\) −14.0794 −0.511723 −0.255861 0.966713i \(-0.582359\pi\)
−0.255861 + 0.966713i \(0.582359\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.3616 + 33.5353i 0.701858 + 1.21565i 0.967813 + 0.251669i \(0.0809793\pi\)
−0.265955 + 0.963985i \(0.585687\pi\)
\(762\) 0 0
\(763\) −2.35252 5.16041i −0.0851671 0.186819i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.02589 + 13.9013i −0.289798 + 0.501945i
\(768\) 0 0
\(769\) 5.14295 8.90786i 0.185460 0.321226i −0.758272 0.651939i \(-0.773956\pi\)
0.943731 + 0.330713i \(0.107289\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.6768 + 39.2773i 0.815627 + 1.41271i 0.908877 + 0.417064i \(0.136941\pi\)
−0.0932501 + 0.995643i \(0.529726\pi\)
\(774\) 0 0
\(775\) −5.08606 + 8.80931i −0.182697 + 0.316440i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.88926 + 3.27229i 0.0676898 + 0.117242i
\(780\) 0 0
\(781\) −1.87139 + 3.24135i −0.0669637 + 0.115985i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.36028 + 2.35607i 0.0485504 + 0.0840917i
\(786\) 0 0
\(787\) −26.1087 −0.930675 −0.465337 0.885133i \(-0.654067\pi\)
−0.465337 + 0.885133i \(0.654067\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.3017 34.0788i 0.864067 1.21170i
\(792\) 0 0
\(793\) −5.71735 + 9.90274i −0.203029 + 0.351657i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.1618 27.9931i 0.572481 0.991567i −0.423829 0.905742i \(-0.639314\pi\)
0.996310 0.0858244i \(-0.0273524\pi\)