Properties

Label 3024.2.q.k.2305.10
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.10
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.k.2881.10

$q$-expansion

\(f(q)\) \(=\) \(q+(1.33401 + 2.31057i) q^{5} +(-0.581213 - 2.58112i) q^{7} +O(q^{10})\) \(q+(1.33401 + 2.31057i) q^{5} +(-0.581213 - 2.58112i) q^{7} +(-0.682257 + 1.18170i) q^{11} +(-2.75597 + 4.77348i) q^{13} +(1.23930 + 2.14654i) q^{17} +(2.19600 - 3.80358i) q^{19} +(2.34501 + 4.06167i) q^{23} +(-1.05916 + 1.83452i) q^{25} +(-2.94810 - 5.10625i) q^{29} -3.11678 q^{31} +(5.18852 - 4.78617i) q^{35} +(-3.15627 + 5.46681i) q^{37} +(-1.38693 + 2.40224i) q^{41} +(4.87889 + 8.45048i) q^{43} -10.0501 q^{47} +(-6.32438 + 3.00036i) q^{49} +(1.47823 + 2.56037i) q^{53} -3.64055 q^{55} +3.55617 q^{59} +1.32609 q^{61} -14.7059 q^{65} -8.29874 q^{67} +12.3069 q^{71} +(-1.11577 - 1.93257i) q^{73} +(3.44666 + 1.07417i) q^{77} -12.8307 q^{79} +(5.15934 + 8.93625i) q^{83} +(-3.30648 + 5.72700i) q^{85} +(-7.73159 + 13.3915i) q^{89} +(13.9227 + 4.33908i) q^{91} +11.7179 q^{95} +(-2.55369 - 4.42311i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.33401 + 2.31057i 0.596587 + 1.03332i 0.993321 + 0.115385i \(0.0368103\pi\)
−0.396734 + 0.917934i \(0.629856\pi\)
\(6\) 0 0
\(7\) −0.581213 2.58112i −0.219678 0.975572i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.682257 + 1.18170i −0.205708 + 0.356297i −0.950358 0.311158i \(-0.899283\pi\)
0.744650 + 0.667455i \(0.232616\pi\)
\(12\) 0 0
\(13\) −2.75597 + 4.77348i −0.764368 + 1.32392i 0.176212 + 0.984352i \(0.443616\pi\)
−0.940580 + 0.339572i \(0.889718\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.23930 + 2.14654i 0.300575 + 0.520611i 0.976266 0.216573i \(-0.0694880\pi\)
−0.675691 + 0.737185i \(0.736155\pi\)
\(18\) 0 0
\(19\) 2.19600 3.80358i 0.503797 0.872601i −0.496194 0.868212i \(-0.665269\pi\)
0.999990 0.00438950i \(-0.00139723\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.34501 + 4.06167i 0.488968 + 0.846918i 0.999919 0.0126921i \(-0.00404012\pi\)
−0.510951 + 0.859610i \(0.670707\pi\)
\(24\) 0 0
\(25\) −1.05916 + 1.83452i −0.211832 + 0.366904i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.94810 5.10625i −0.547448 0.948207i −0.998448 0.0556837i \(-0.982266\pi\)
0.451001 0.892524i \(-0.351067\pi\)
\(30\) 0 0
\(31\) −3.11678 −0.559789 −0.279895 0.960031i \(-0.590300\pi\)
−0.279895 + 0.960031i \(0.590300\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.18852 4.78617i 0.877021 0.809011i
\(36\) 0 0
\(37\) −3.15627 + 5.46681i −0.518887 + 0.898739i 0.480872 + 0.876791i \(0.340320\pi\)
−0.999759 + 0.0219479i \(0.993013\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.38693 + 2.40224i −0.216603 + 0.375167i −0.953767 0.300546i \(-0.902831\pi\)
0.737164 + 0.675713i \(0.236164\pi\)
\(42\) 0 0
\(43\) 4.87889 + 8.45048i 0.744023 + 1.28869i 0.950650 + 0.310267i \(0.100418\pi\)
−0.206626 + 0.978420i \(0.566248\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.0501 −1.46596 −0.732979 0.680252i \(-0.761871\pi\)
−0.732979 + 0.680252i \(0.761871\pi\)
\(48\) 0 0
\(49\) −6.32438 + 3.00036i −0.903483 + 0.428623i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.47823 + 2.56037i 0.203050 + 0.351694i 0.949510 0.313737i \(-0.101581\pi\)
−0.746459 + 0.665431i \(0.768248\pi\)
\(54\) 0 0
\(55\) −3.64055 −0.490891
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.55617 0.462974 0.231487 0.972838i \(-0.425641\pi\)
0.231487 + 0.972838i \(0.425641\pi\)
\(60\) 0 0
\(61\) 1.32609 0.169788 0.0848940 0.996390i \(-0.472945\pi\)
0.0848940 + 0.996390i \(0.472945\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.7059 −1.82405
\(66\) 0 0
\(67\) −8.29874 −1.01385 −0.506926 0.861990i \(-0.669218\pi\)
−0.506926 + 0.861990i \(0.669218\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3069 1.46056 0.730279 0.683149i \(-0.239390\pi\)
0.730279 + 0.683149i \(0.239390\pi\)
\(72\) 0 0
\(73\) −1.11577 1.93257i −0.130591 0.226190i 0.793314 0.608813i \(-0.208354\pi\)
−0.923905 + 0.382623i \(0.875021\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.44666 + 1.07417i 0.392783 + 0.122413i
\(78\) 0 0
\(79\) −12.8307 −1.44357 −0.721783 0.692119i \(-0.756677\pi\)
−0.721783 + 0.692119i \(0.756677\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.15934 + 8.93625i 0.566312 + 0.980881i 0.996926 + 0.0783447i \(0.0249635\pi\)
−0.430615 + 0.902536i \(0.641703\pi\)
\(84\) 0 0
\(85\) −3.30648 + 5.72700i −0.358638 + 0.621180i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.73159 + 13.3915i −0.819547 + 1.41950i 0.0864698 + 0.996254i \(0.472441\pi\)
−0.906017 + 0.423242i \(0.860892\pi\)
\(90\) 0 0
\(91\) 13.9227 + 4.33908i 1.45950 + 0.454860i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.7179 1.20223
\(96\) 0 0
\(97\) −2.55369 4.42311i −0.259288 0.449099i 0.706764 0.707450i \(-0.250154\pi\)
−0.966051 + 0.258351i \(0.916821\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.34748 + 2.33391i −0.134079 + 0.232232i −0.925245 0.379369i \(-0.876141\pi\)
0.791166 + 0.611601i \(0.209474\pi\)
\(102\) 0 0
\(103\) −6.51071 11.2769i −0.641519 1.11114i −0.985094 0.172019i \(-0.944971\pi\)
0.343574 0.939126i \(-0.388362\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.49753 + 2.59379i −0.144771 + 0.250751i −0.929288 0.369357i \(-0.879578\pi\)
0.784516 + 0.620108i \(0.212911\pi\)
\(108\) 0 0
\(109\) 10.0132 + 17.3434i 0.959093 + 1.66120i 0.724710 + 0.689054i \(0.241974\pi\)
0.234383 + 0.972144i \(0.424693\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.23211 10.7943i 0.586267 1.01544i −0.408449 0.912781i \(-0.633930\pi\)
0.994716 0.102664i \(-0.0327365\pi\)
\(114\) 0 0
\(115\) −6.25652 + 10.8366i −0.583424 + 1.01052i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.82017 4.44639i 0.441864 0.407600i
\(120\) 0 0
\(121\) 4.56905 + 7.91383i 0.415368 + 0.719439i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.68837 0.687669
\(126\) 0 0
\(127\) −15.0734 −1.33754 −0.668772 0.743467i \(-0.733180\pi\)
−0.668772 + 0.743467i \(0.733180\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.42032 12.8524i −0.648316 1.12292i −0.983525 0.180773i \(-0.942140\pi\)
0.335208 0.942144i \(-0.391193\pi\)
\(132\) 0 0
\(133\) −11.0938 3.45745i −0.961959 0.299799i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0779 + 17.4555i −0.861017 + 1.49132i 0.00993230 + 0.999951i \(0.496838\pi\)
−0.870949 + 0.491374i \(0.836495\pi\)
\(138\) 0 0
\(139\) 9.91552 17.1742i 0.841023 1.45669i −0.0480074 0.998847i \(-0.515287\pi\)
0.889031 0.457848i \(-0.151380\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.76056 6.51347i −0.314473 0.544684i
\(144\) 0 0
\(145\) 7.86557 13.6236i 0.653200 1.13138i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.65166 + 14.9851i 0.708772 + 1.22763i 0.965313 + 0.261096i \(0.0840838\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(150\) 0 0
\(151\) −1.99488 + 3.45523i −0.162341 + 0.281183i −0.935708 0.352776i \(-0.885238\pi\)
0.773367 + 0.633959i \(0.218571\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.15781 7.20153i −0.333963 0.578441i
\(156\) 0 0
\(157\) −24.1988 −1.93127 −0.965637 0.259896i \(-0.916312\pi\)
−0.965637 + 0.259896i \(0.916312\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.12073 8.41345i 0.718814 0.663073i
\(162\) 0 0
\(163\) −2.34498 + 4.06162i −0.183673 + 0.318131i −0.943129 0.332428i \(-0.892132\pi\)
0.759456 + 0.650559i \(0.225465\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.12627 + 10.6110i −0.474065 + 0.821104i −0.999559 0.0296928i \(-0.990547\pi\)
0.525494 + 0.850797i \(0.323880\pi\)
\(168\) 0 0
\(169\) −8.69072 15.0528i −0.668517 1.15791i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.11006 0.616596 0.308298 0.951290i \(-0.400241\pi\)
0.308298 + 0.951290i \(0.400241\pi\)
\(174\) 0 0
\(175\) 5.35072 + 1.66757i 0.404476 + 0.126057i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.91636 + 8.51538i 0.367466 + 0.636469i 0.989169 0.146784i \(-0.0468922\pi\)
−0.621703 + 0.783253i \(0.713559\pi\)
\(180\) 0 0
\(181\) 15.8876 1.18092 0.590458 0.807068i \(-0.298947\pi\)
0.590458 + 0.807068i \(0.298947\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.8419 −1.23824
\(186\) 0 0
\(187\) −3.38209 −0.247323
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.21898 −0.160560 −0.0802800 0.996772i \(-0.525581\pi\)
−0.0802800 + 0.996772i \(0.525581\pi\)
\(192\) 0 0
\(193\) 5.84168 0.420493 0.210247 0.977648i \(-0.432573\pi\)
0.210247 + 0.977648i \(0.432573\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.93695 −0.138002 −0.0690010 0.997617i \(-0.521981\pi\)
−0.0690010 + 0.997617i \(0.521981\pi\)
\(198\) 0 0
\(199\) −1.84540 3.19633i −0.130817 0.226582i 0.793175 0.608994i \(-0.208427\pi\)
−0.923992 + 0.382412i \(0.875093\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.4664 + 10.5772i −0.804783 + 0.742375i
\(204\) 0 0
\(205\) −7.40073 −0.516889
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.99647 + 5.19004i 0.207270 + 0.359002i
\(210\) 0 0
\(211\) 5.67097 9.82241i 0.390406 0.676202i −0.602097 0.798423i \(-0.705668\pi\)
0.992503 + 0.122220i \(0.0390014\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.0170 + 22.5460i −0.887749 + 1.53763i
\(216\) 0 0
\(217\) 1.81151 + 8.04478i 0.122973 + 0.546115i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −13.6619 −0.919000
\(222\) 0 0
\(223\) 0.965547 + 1.67238i 0.0646578 + 0.111991i 0.896542 0.442958i \(-0.146071\pi\)
−0.831884 + 0.554949i \(0.812738\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.86413 + 17.0852i −0.654705 + 1.13398i 0.327262 + 0.944934i \(0.393874\pi\)
−0.981968 + 0.189049i \(0.939459\pi\)
\(228\) 0 0
\(229\) −13.2098 22.8801i −0.872931 1.51196i −0.858951 0.512058i \(-0.828883\pi\)
−0.0139803 0.999902i \(-0.504450\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.24071 7.34513i 0.277818 0.481196i −0.693024 0.720915i \(-0.743722\pi\)
0.970842 + 0.239719i \(0.0770553\pi\)
\(234\) 0 0
\(235\) −13.4069 23.2215i −0.874571 1.51480i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.08023 + 13.9954i −0.522667 + 0.905286i 0.476985 + 0.878911i \(0.341730\pi\)
−0.999652 + 0.0263743i \(0.991604\pi\)
\(240\) 0 0
\(241\) −5.48677 + 9.50336i −0.353434 + 0.612165i −0.986849 0.161647i \(-0.948319\pi\)
0.633415 + 0.773812i \(0.281653\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −15.3693 10.6104i −0.981911 0.677875i
\(246\) 0 0
\(247\) 12.1042 + 20.9651i 0.770172 + 1.33398i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.85873 0.180442 0.0902208 0.995922i \(-0.471243\pi\)
0.0902208 + 0.995922i \(0.471243\pi\)
\(252\) 0 0
\(253\) −6.39959 −0.402339
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.2938 + 21.2934i 0.766864 + 1.32825i 0.939256 + 0.343218i \(0.111517\pi\)
−0.172392 + 0.985028i \(0.555150\pi\)
\(258\) 0 0
\(259\) 15.9450 + 4.96933i 0.990773 + 0.308779i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.478986 + 0.829628i −0.0295355 + 0.0511570i −0.880415 0.474203i \(-0.842736\pi\)
0.850880 + 0.525360i \(0.176069\pi\)
\(264\) 0 0
\(265\) −3.94394 + 6.83111i −0.242274 + 0.419632i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.31005 14.3934i −0.506673 0.877583i −0.999970 0.00772245i \(-0.997542\pi\)
0.493297 0.869861i \(-0.335791\pi\)
\(270\) 0 0
\(271\) −7.21801 + 12.5020i −0.438463 + 0.759440i −0.997571 0.0696545i \(-0.977810\pi\)
0.559108 + 0.829095i \(0.311144\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.44524 2.50323i −0.0871511 0.150950i
\(276\) 0 0
\(277\) 2.23321 3.86804i 0.134181 0.232408i −0.791103 0.611682i \(-0.790493\pi\)
0.925284 + 0.379275i \(0.123826\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.62617 4.54867i −0.156664 0.271351i 0.776999 0.629501i \(-0.216741\pi\)
−0.933664 + 0.358151i \(0.883407\pi\)
\(282\) 0 0
\(283\) −11.3150 −0.672608 −0.336304 0.941754i \(-0.609177\pi\)
−0.336304 + 0.941754i \(0.609177\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.00658 + 2.18363i 0.413585 + 0.128896i
\(288\) 0 0
\(289\) 5.42826 9.40201i 0.319309 0.553060i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.38422 9.32574i 0.314549 0.544815i −0.664792 0.747028i \(-0.731480\pi\)
0.979342 + 0.202213i \(0.0648133\pi\)
\(294\) 0 0
\(295\) 4.74397 + 8.21679i 0.276204 + 0.478400i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −25.8511 −1.49501
\(300\) 0 0
\(301\) 18.9761 17.5045i 1.09376 1.00894i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.76901 + 3.06402i 0.101293 + 0.175445i
\(306\) 0 0
\(307\) −9.42151 −0.537714 −0.268857 0.963180i \(-0.586646\pi\)
−0.268857 + 0.963180i \(0.586646\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.3151 −0.641619 −0.320809 0.947144i \(-0.603955\pi\)
−0.320809 + 0.947144i \(0.603955\pi\)
\(312\) 0 0
\(313\) 21.6862 1.22578 0.612889 0.790169i \(-0.290007\pi\)
0.612889 + 0.790169i \(0.290007\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.2174 1.41635 0.708174 0.706038i \(-0.249519\pi\)
0.708174 + 0.706038i \(0.249519\pi\)
\(318\) 0 0
\(319\) 8.04543 0.450458
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.8860 0.605715
\(324\) 0 0
\(325\) −5.83802 10.1118i −0.323835 0.560899i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.84125 + 25.9405i 0.322038 + 1.43015i
\(330\) 0 0
\(331\) 17.0245 0.935753 0.467876 0.883794i \(-0.345019\pi\)
0.467876 + 0.883794i \(0.345019\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0706 19.1748i −0.604851 1.04763i
\(336\) 0 0
\(337\) 6.85166 11.8674i 0.373233 0.646459i −0.616827 0.787098i \(-0.711582\pi\)
0.990061 + 0.140639i \(0.0449157\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.12644 3.68310i 0.115153 0.199451i
\(342\) 0 0
\(343\) 11.4201 + 14.5802i 0.616628 + 0.787254i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.4366 1.31182 0.655912 0.754837i \(-0.272284\pi\)
0.655912 + 0.754837i \(0.272284\pi\)
\(348\) 0 0
\(349\) 11.4881 + 19.8979i 0.614943 + 1.06511i 0.990394 + 0.138271i \(0.0441544\pi\)
−0.375451 + 0.926842i \(0.622512\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0152 20.8110i 0.639507 1.10766i −0.346034 0.938222i \(-0.612472\pi\)
0.985541 0.169437i \(-0.0541948\pi\)
\(354\) 0 0
\(355\) 16.4175 + 28.4359i 0.871349 + 1.50922i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.84234 + 17.0474i −0.519459 + 0.899729i 0.480285 + 0.877112i \(0.340533\pi\)
−0.999744 + 0.0226169i \(0.992800\pi\)
\(360\) 0 0
\(361\) −0.144819 0.250833i −0.00762204 0.0132018i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.97690 5.15613i 0.155818 0.269884i
\(366\) 0 0
\(367\) −7.10028 + 12.2980i −0.370632 + 0.641953i −0.989663 0.143414i \(-0.954192\pi\)
0.619031 + 0.785366i \(0.287525\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.74946 5.30361i 0.298497 0.275350i
\(372\) 0 0
\(373\) 14.2335 + 24.6531i 0.736980 + 1.27649i 0.953849 + 0.300287i \(0.0970823\pi\)
−0.216869 + 0.976201i \(0.569584\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 32.4994 1.67381
\(378\) 0 0
\(379\) 4.25098 0.218358 0.109179 0.994022i \(-0.465178\pi\)
0.109179 + 0.994022i \(0.465178\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.9214 + 31.0407i 0.915740 + 1.58611i 0.805814 + 0.592168i \(0.201728\pi\)
0.109926 + 0.993940i \(0.464939\pi\)
\(384\) 0 0
\(385\) 2.11593 + 9.39669i 0.107838 + 0.478900i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.8972 + 27.5348i −0.806020 + 1.39607i 0.109580 + 0.993978i \(0.465049\pi\)
−0.915600 + 0.402090i \(0.868284\pi\)
\(390\) 0 0
\(391\) −5.81235 + 10.0673i −0.293943 + 0.509125i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −17.1163 29.6462i −0.861213 1.49166i
\(396\) 0 0
\(397\) 3.07669 5.32899i 0.154415 0.267454i −0.778431 0.627730i \(-0.783984\pi\)
0.932846 + 0.360276i \(0.117317\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.41146 12.8370i −0.370111 0.641051i 0.619471 0.785019i \(-0.287347\pi\)
−0.989582 + 0.143968i \(0.954014\pi\)
\(402\) 0 0
\(403\) 8.58974 14.8779i 0.427885 0.741119i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.30677 7.45954i −0.213479 0.369756i
\(408\) 0 0
\(409\) 21.4443 1.06035 0.530177 0.847887i \(-0.322125\pi\)
0.530177 + 0.847887i \(0.322125\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.06689 9.17892i −0.101705 0.451665i
\(414\) 0 0
\(415\) −13.7652 + 23.8421i −0.675708 + 1.17036i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.2332 22.9205i 0.646483 1.11974i −0.337474 0.941335i \(-0.609572\pi\)
0.983957 0.178406i \(-0.0570942\pi\)
\(420\) 0 0
\(421\) −8.54824 14.8060i −0.416616 0.721600i 0.578981 0.815341i \(-0.303451\pi\)
−0.995597 + 0.0937415i \(0.970117\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.25048 −0.254686
\(426\) 0 0
\(427\) −0.770739 3.42279i −0.0372987 0.165640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0292 20.8352i −0.579425 1.00359i −0.995545 0.0942846i \(-0.969944\pi\)
0.416120 0.909310i \(-0.363390\pi\)
\(432\) 0 0
\(433\) −6.58345 −0.316380 −0.158190 0.987409i \(-0.550566\pi\)
−0.158190 + 0.987409i \(0.550566\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.5985 0.985362
\(438\) 0 0
\(439\) −21.2654 −1.01494 −0.507472 0.861668i \(-0.669420\pi\)
−0.507472 + 0.861668i \(0.669420\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.943448 −0.0448246 −0.0224123 0.999749i \(-0.507135\pi\)
−0.0224123 + 0.999749i \(0.507135\pi\)
\(444\) 0 0
\(445\) −41.2560 −1.95572
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.7959 0.839842 0.419921 0.907561i \(-0.362058\pi\)
0.419921 + 0.907561i \(0.362058\pi\)
\(450\) 0 0
\(451\) −1.89249 3.27789i −0.0891139 0.154350i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.54729 + 37.9578i 0.400703 + 1.77949i
\(456\) 0 0
\(457\) −13.7770 −0.644462 −0.322231 0.946661i \(-0.604433\pi\)
−0.322231 + 0.946661i \(0.604433\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.97576 + 5.15417i 0.138595 + 0.240054i 0.926965 0.375148i \(-0.122408\pi\)
−0.788370 + 0.615201i \(0.789075\pi\)
\(462\) 0 0
\(463\) 17.7618 30.7644i 0.825463 1.42974i −0.0761023 0.997100i \(-0.524248\pi\)
0.901565 0.432643i \(-0.142419\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.2574 21.2305i 0.567207 0.982431i −0.429634 0.903003i \(-0.641357\pi\)
0.996841 0.0794277i \(-0.0253093\pi\)
\(468\) 0 0
\(469\) 4.82333 + 21.4200i 0.222721 + 0.989086i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −13.3146 −0.612207
\(474\) 0 0
\(475\) 4.65183 + 8.05720i 0.213440 + 0.369690i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.61760 + 16.6582i −0.439439 + 0.761131i −0.997646 0.0685707i \(-0.978156\pi\)
0.558207 + 0.829702i \(0.311489\pi\)
\(480\) 0 0
\(481\) −17.3971 30.1327i −0.793241 1.37393i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.81328 11.8009i 0.309375 0.535853i
\(486\) 0 0
\(487\) −12.3089 21.3197i −0.557770 0.966086i −0.997682 0.0680455i \(-0.978324\pi\)
0.439912 0.898041i \(-0.355010\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.73086 16.8543i 0.439147 0.760626i −0.558476 0.829520i \(-0.688614\pi\)
0.997624 + 0.0688947i \(0.0219472\pi\)
\(492\) 0 0
\(493\) 7.30717 12.6564i 0.329098 0.570015i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.15292 31.7655i −0.320852 1.42488i
\(498\) 0 0
\(499\) −3.58890 6.21617i −0.160661 0.278274i 0.774445 0.632642i \(-0.218029\pi\)
−0.935106 + 0.354368i \(0.884696\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.1112 0.985889 0.492945 0.870061i \(-0.335921\pi\)
0.492945 + 0.870061i \(0.335921\pi\)
\(504\) 0 0
\(505\) −7.19021 −0.319960
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.6787 27.1564i −0.694947 1.20368i −0.970198 0.242312i \(-0.922094\pi\)
0.275251 0.961372i \(-0.411239\pi\)
\(510\) 0 0
\(511\) −4.33970 + 4.00318i −0.191977 + 0.177090i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.3707 30.0869i 0.765444 1.32579i
\(516\) 0 0
\(517\) 6.85675 11.8762i 0.301559 0.522316i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.76588 3.05859i −0.0773645 0.133999i 0.824748 0.565501i \(-0.191317\pi\)
−0.902112 + 0.431502i \(0.857984\pi\)
\(522\) 0 0
\(523\) 7.03821 12.1905i 0.307759 0.533055i −0.670113 0.742259i \(-0.733754\pi\)
0.977872 + 0.209205i \(0.0670875\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.86263 6.69027i −0.168259 0.291433i
\(528\) 0 0
\(529\) 0.501870 0.869264i 0.0218204 0.0377941i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.64469 13.2410i −0.331128 0.573531i
\(534\) 0 0
\(535\) −7.99086 −0.345475
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.769313 9.52056i 0.0331367 0.410080i
\(540\) 0 0
\(541\) 11.5799 20.0569i 0.497858 0.862315i −0.502139 0.864787i \(-0.667454\pi\)
0.999997 + 0.00247207i \(0.000786884\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.7155 + 46.2725i −1.14436 + 1.98210i
\(546\) 0 0
\(547\) 5.76832 + 9.99102i 0.246635 + 0.427185i 0.962590 0.270962i \(-0.0873417\pi\)
−0.715955 + 0.698147i \(0.754008\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −25.8961 −1.10321
\(552\) 0 0
\(553\) 7.45737 + 33.1176i 0.317120 + 1.40830i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.04108 + 1.80321i 0.0441122 + 0.0764045i 0.887238 0.461311i \(-0.152621\pi\)
−0.843126 + 0.537716i \(0.819287\pi\)
\(558\) 0 0
\(559\) −53.7842 −2.27483
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.70807 −0.282711 −0.141356 0.989959i \(-0.545146\pi\)
−0.141356 + 0.989959i \(0.545146\pi\)
\(564\) 0 0
\(565\) 33.2548 1.39904
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.02223 0.336309 0.168155 0.985761i \(-0.446219\pi\)
0.168155 + 0.985761i \(0.446219\pi\)
\(570\) 0 0
\(571\) −6.68430 −0.279729 −0.139865 0.990171i \(-0.544667\pi\)
−0.139865 + 0.990171i \(0.544667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.93496 −0.414316
\(576\) 0 0
\(577\) −14.0088 24.2639i −0.583193 1.01012i −0.995098 0.0988925i \(-0.968470\pi\)
0.411906 0.911227i \(-0.364863\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 20.0669 18.5108i 0.832514 0.767956i
\(582\) 0 0
\(583\) −4.03413 −0.167076
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.35952 5.81886i −0.138662 0.240170i 0.788328 0.615255i \(-0.210947\pi\)
−0.926990 + 0.375085i \(0.877614\pi\)
\(588\) 0 0
\(589\) −6.84443 + 11.8549i −0.282020 + 0.488473i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.19462 5.53325i 0.131187 0.227223i −0.792947 0.609290i \(-0.791454\pi\)
0.924135 + 0.382067i \(0.124788\pi\)
\(594\) 0 0
\(595\) 16.7038 + 5.20583i 0.684791 + 0.213418i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.92196 −0.241965 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(600\) 0 0
\(601\) −1.97104 3.41393i −0.0804002 0.139257i 0.823022 0.568010i \(-0.192287\pi\)
−0.903422 + 0.428753i \(0.858953\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12.1903 + 21.1142i −0.495607 + 0.858416i
\(606\) 0 0
\(607\) −3.54775 6.14489i −0.143999 0.249413i 0.785000 0.619496i \(-0.212663\pi\)
−0.928999 + 0.370082i \(0.879330\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.6978 47.9739i 1.12053 1.94082i
\(612\) 0 0
\(613\) 6.87000 + 11.8992i 0.277477 + 0.480604i 0.970757 0.240064i \(-0.0771685\pi\)
−0.693280 + 0.720668i \(0.743835\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.3605 28.3372i 0.658649 1.14081i −0.322317 0.946632i \(-0.604462\pi\)
0.980966 0.194182i \(-0.0622051\pi\)
\(618\) 0 0
\(619\) 11.3090 19.5878i 0.454547 0.787299i −0.544115 0.839011i \(-0.683134\pi\)
0.998662 + 0.0517121i \(0.0164678\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 39.0588 + 12.1729i 1.56486 + 0.487695i
\(624\) 0 0
\(625\) 15.5522 + 26.9371i 0.622086 + 1.07749i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.6463 −0.623858
\(630\) 0 0
\(631\) 43.9355 1.74905 0.874523 0.484984i \(-0.161175\pi\)
0.874523 + 0.484984i \(0.161175\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.1080 34.8281i −0.797962 1.38211i
\(636\) 0 0
\(637\) 3.10763 38.4582i 0.123129 1.52377i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.9297 34.5193i 0.787178 1.36343i −0.140512 0.990079i \(-0.544875\pi\)
0.927689 0.373353i \(-0.121792\pi\)
\(642\) 0 0
\(643\) −9.24049 + 16.0050i −0.364410 + 0.631176i −0.988681 0.150032i \(-0.952062\pi\)
0.624272 + 0.781207i \(0.285396\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.76068 + 15.1739i 0.344418 + 0.596549i 0.985248 0.171134i \(-0.0547430\pi\)
−0.640830 + 0.767683i \(0.721410\pi\)
\(648\) 0 0
\(649\) −2.42622 + 4.20234i −0.0952376 + 0.164956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.7027 + 23.7338i 0.536230 + 0.928777i 0.999103 + 0.0423525i \(0.0134852\pi\)
−0.462873 + 0.886425i \(0.653181\pi\)
\(654\) 0 0
\(655\) 19.7975 34.2904i 0.773554 1.33984i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.2580 28.1597i −0.633322 1.09695i −0.986868 0.161529i \(-0.948358\pi\)
0.353546 0.935417i \(-0.384976\pi\)
\(660\) 0 0
\(661\) 38.8671 1.51176 0.755878 0.654712i \(-0.227210\pi\)
0.755878 + 0.654712i \(0.227210\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.81061 30.2454i −0.264104 1.17287i
\(666\) 0 0
\(667\) 13.8266 23.9484i 0.535369 0.927286i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.904731 + 1.56704i −0.0349268 + 0.0604949i
\(672\) 0 0
\(673\) −4.50978 7.81117i −0.173839 0.301099i 0.765920 0.642936i \(-0.222284\pi\)
−0.939759 + 0.341838i \(0.888951\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.8287 −0.723646 −0.361823 0.932247i \(-0.617845\pi\)
−0.361823 + 0.932247i \(0.617845\pi\)
\(678\) 0 0
\(679\) −9.93236 + 9.16215i −0.381169 + 0.351611i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.35476 + 9.27471i 0.204894 + 0.354887i 0.950099 0.311949i \(-0.100982\pi\)
−0.745205 + 0.666836i \(0.767648\pi\)
\(684\) 0 0
\(685\) −53.7763 −2.05468
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −16.2958 −0.620821
\(690\) 0 0
\(691\) −5.04553 −0.191941 −0.0959705 0.995384i \(-0.530595\pi\)
−0.0959705 + 0.995384i \(0.530595\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 52.9096 2.00697
\(696\) 0 0
\(697\) −6.87533 −0.260422
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −44.9138 −1.69637 −0.848186 0.529698i \(-0.822305\pi\)
−0.848186 + 0.529698i \(0.822305\pi\)
\(702\) 0 0
\(703\) 13.8623 + 24.0102i 0.522827 + 0.905563i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.80727 + 2.12152i 0.256014 + 0.0797879i
\(708\) 0 0
\(709\) 7.45317 0.279910 0.139955 0.990158i \(-0.455304\pi\)
0.139955 + 0.990158i \(0.455304\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.30887 12.6593i −0.273719 0.474096i
\(714\) 0 0
\(715\) 10.0332 17.3781i 0.375222 0.649903i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.5574 37.3385i 0.803954 1.39249i −0.113040 0.993590i \(-0.536059\pi\)
0.916995 0.398899i \(-0.130608\pi\)
\(720\) 0 0
\(721\) −25.3229 + 23.3592i −0.943074 + 0.869943i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.4900 0.463868
\(726\) 0 0
\(727\) 0.389926 + 0.675372i 0.0144616 + 0.0250482i 0.873166 0.487424i \(-0.162063\pi\)
−0.858704 + 0.512472i \(0.828730\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.0928 + 20.9454i −0.447270 + 0.774694i
\(732\) 0 0
\(733\) 7.83859 + 13.5768i 0.289525 + 0.501472i 0.973696 0.227849i \(-0.0731694\pi\)
−0.684171 + 0.729321i \(0.739836\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.66187 9.80664i 0.208558 0.361232i
\(738\) 0 0
\(739\) −8.87450 15.3711i −0.326454 0.565434i 0.655352 0.755324i \(-0.272520\pi\)
−0.981805 + 0.189889i \(0.939187\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.74308 + 6.48321i −0.137320 + 0.237846i −0.926481 0.376340i \(-0.877182\pi\)
0.789161 + 0.614186i \(0.210516\pi\)
\(744\) 0 0
\(745\) −23.0828 + 39.9806i −0.845688 + 1.46477i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.56528 + 2.35775i 0.276429 + 0.0861505i
\(750\) 0 0
\(751\) 11.6800 + 20.2303i 0.426208 + 0.738213i 0.996532 0.0832060i \(-0.0265160\pi\)
−0.570325 + 0.821419i \(0.693183\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.6447 −0.387402
\(756\) 0 0
\(757\) 31.2350 1.13525 0.567627 0.823286i \(-0.307862\pi\)
0.567627 + 0.823286i \(0.307862\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.30735 + 14.3887i 0.301141 + 0.521592i 0.976395 0.215994i \(-0.0692992\pi\)
−0.675254 + 0.737586i \(0.735966\pi\)
\(762\) 0 0
\(763\) 38.9457 35.9256i 1.40993 1.30059i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.80070 + 16.9753i −0.353883 + 0.612943i
\(768\) 0 0
\(769\) 18.3794 31.8340i 0.662777 1.14796i −0.317106 0.948390i \(-0.602711\pi\)
0.979883 0.199573i \(-0.0639556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.77690 8.27382i −0.171813 0.297589i 0.767241 0.641359i \(-0.221629\pi\)
−0.939054 + 0.343770i \(0.888296\pi\)
\(774\) 0 0
\(775\) 3.30116 5.71778i 0.118581 0.205389i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.09141 + 10.5506i 0.218247 + 0.378016i
\(780\) 0 0
\(781\) −8.39645 + 14.5431i −0.300448 + 0.520392i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −32.2814 55.9130i −1.15217 1.99562i
\(786\) 0 0
\(787\) 20.2677 0.722466 0.361233 0.932476i \(-0.382356\pi\)
0.361233 + 0.932476i \(0.382356\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −31.4837 9.81203i −1.11943 0.348876i
\(792\) 0 0
\(793\) −3.65465 + 6.33004i −0.129780 + 0.224786i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.4236 + 37.1068i −0.758863 + 1.31439i 0.184567 + 0.982820i \(0.440912\pi\)
−0.943431 + 0.331570i \(0.892422\pi\)