Properties

Label 3024.2.q.k.2305.1
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.1
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.k.2881.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.76479 - 3.05671i) q^{5} +(2.63986 + 0.176417i) q^{7} +O(q^{10})\) \(q+(-1.76479 - 3.05671i) q^{5} +(2.63986 + 0.176417i) q^{7} +(1.16036 - 2.00981i) q^{11} +(-2.35884 + 4.08563i) q^{13} +(0.636946 + 1.10322i) q^{17} +(-2.78386 + 4.82178i) q^{19} +(1.64855 + 2.85537i) q^{23} +(-3.72899 + 6.45880i) q^{25} +(4.32116 + 7.48447i) q^{29} -8.51642 q^{31} +(-4.11956 - 8.38064i) q^{35} +(-2.84024 + 4.91943i) q^{37} +(-1.66553 + 2.88478i) q^{41} +(-0.0444165 - 0.0769317i) q^{43} +7.05213 q^{47} +(6.93775 + 0.931432i) q^{49} +(-3.41816 - 5.92042i) q^{53} -8.19121 q^{55} -7.99490 q^{59} +13.3553 q^{61} +16.6514 q^{65} -6.12804 q^{67} +1.30202 q^{71} +(6.64529 + 11.5100i) q^{73} +(3.41777 - 5.10092i) q^{77} +10.0281 q^{79} +(-5.90243 - 10.2233i) q^{83} +(2.24815 - 3.89392i) q^{85} +(-0.561496 + 0.972540i) q^{89} +(-6.94778 + 10.3694i) q^{91} +19.6517 q^{95} +(-3.50818 - 6.07635i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.76479 3.05671i −0.789239 1.36700i −0.926433 0.376459i \(-0.877142\pi\)
0.137194 0.990544i \(-0.456192\pi\)
\(6\) 0 0
\(7\) 2.63986 + 0.176417i 0.997774 + 0.0666792i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.16036 2.00981i 0.349863 0.605981i −0.636362 0.771391i \(-0.719561\pi\)
0.986225 + 0.165410i \(0.0528948\pi\)
\(12\) 0 0
\(13\) −2.35884 + 4.08563i −0.654224 + 1.13315i 0.327864 + 0.944725i \(0.393671\pi\)
−0.982088 + 0.188424i \(0.939662\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.636946 + 1.10322i 0.154482 + 0.267571i 0.932870 0.360212i \(-0.117296\pi\)
−0.778388 + 0.627783i \(0.783962\pi\)
\(18\) 0 0
\(19\) −2.78386 + 4.82178i −0.638661 + 1.10619i 0.347066 + 0.937841i \(0.387178\pi\)
−0.985727 + 0.168352i \(0.946155\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.64855 + 2.85537i 0.343746 + 0.595386i 0.985125 0.171838i \(-0.0549707\pi\)
−0.641379 + 0.767224i \(0.721637\pi\)
\(24\) 0 0
\(25\) −3.72899 + 6.45880i −0.745798 + 1.29176i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.32116 + 7.48447i 0.802419 + 1.38983i 0.918020 + 0.396535i \(0.129787\pi\)
−0.115601 + 0.993296i \(0.536879\pi\)
\(30\) 0 0
\(31\) −8.51642 −1.52959 −0.764797 0.644272i \(-0.777161\pi\)
−0.764797 + 0.644272i \(0.777161\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.11956 8.38064i −0.696332 1.41659i
\(36\) 0 0
\(37\) −2.84024 + 4.91943i −0.466932 + 0.808750i −0.999286 0.0377716i \(-0.987974\pi\)
0.532354 + 0.846522i \(0.321307\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.66553 + 2.88478i −0.260112 + 0.450528i −0.966272 0.257525i \(-0.917093\pi\)
0.706159 + 0.708053i \(0.250426\pi\)
\(42\) 0 0
\(43\) −0.0444165 0.0769317i −0.00677346 0.0117320i 0.862619 0.505855i \(-0.168823\pi\)
−0.869392 + 0.494123i \(0.835489\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.05213 1.02866 0.514330 0.857593i \(-0.328041\pi\)
0.514330 + 0.857593i \(0.328041\pi\)
\(48\) 0 0
\(49\) 6.93775 + 0.931432i 0.991108 + 0.133062i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.41816 5.92042i −0.469520 0.813233i 0.529873 0.848077i \(-0.322240\pi\)
−0.999393 + 0.0348444i \(0.988906\pi\)
\(54\) 0 0
\(55\) −8.19121 −1.10450
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.99490 −1.04085 −0.520423 0.853908i \(-0.674226\pi\)
−0.520423 + 0.853908i \(0.674226\pi\)
\(60\) 0 0
\(61\) 13.3553 1.70997 0.854985 0.518653i \(-0.173566\pi\)
0.854985 + 0.518653i \(0.173566\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 16.6514 2.06536
\(66\) 0 0
\(67\) −6.12804 −0.748660 −0.374330 0.927296i \(-0.622127\pi\)
−0.374330 + 0.927296i \(0.622127\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.30202 0.154522 0.0772609 0.997011i \(-0.475383\pi\)
0.0772609 + 0.997011i \(0.475383\pi\)
\(72\) 0 0
\(73\) 6.64529 + 11.5100i 0.777772 + 1.34714i 0.933223 + 0.359297i \(0.116984\pi\)
−0.155451 + 0.987844i \(0.549683\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.41777 5.10092i 0.389491 0.581303i
\(78\) 0 0
\(79\) 10.0281 1.12824 0.564122 0.825691i \(-0.309215\pi\)
0.564122 + 0.825691i \(0.309215\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.90243 10.2233i −0.647876 1.12215i −0.983629 0.180204i \(-0.942324\pi\)
0.335753 0.941950i \(-0.391009\pi\)
\(84\) 0 0
\(85\) 2.24815 3.89392i 0.243847 0.422355i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.561496 + 0.972540i −0.0595185 + 0.103089i −0.894249 0.447569i \(-0.852290\pi\)
0.834731 + 0.550658i \(0.185623\pi\)
\(90\) 0 0
\(91\) −6.94778 + 10.3694i −0.728325 + 1.08700i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 19.6517 2.01622
\(96\) 0 0
\(97\) −3.50818 6.07635i −0.356202 0.616960i 0.631121 0.775685i \(-0.282595\pi\)
−0.987323 + 0.158724i \(0.949262\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.87055 + 8.43605i −0.484638 + 0.839418i −0.999844 0.0176482i \(-0.994382\pi\)
0.515206 + 0.857066i \(0.327715\pi\)
\(102\) 0 0
\(103\) 5.14279 + 8.90757i 0.506734 + 0.877689i 0.999970 + 0.00779301i \(0.00248062\pi\)
−0.493236 + 0.869896i \(0.664186\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.72201 4.71465i 0.263146 0.455783i −0.703930 0.710269i \(-0.748573\pi\)
0.967076 + 0.254487i \(0.0819065\pi\)
\(108\) 0 0
\(109\) 0.417404 + 0.722965i 0.0399800 + 0.0692475i 0.885323 0.464977i \(-0.153937\pi\)
−0.845343 + 0.534224i \(0.820604\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.44881 + 9.43761i −0.512581 + 0.887815i 0.487313 + 0.873227i \(0.337977\pi\)
−0.999894 + 0.0145882i \(0.995356\pi\)
\(114\) 0 0
\(115\) 5.81870 10.0783i 0.542596 0.939804i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.48682 + 3.02472i 0.136297 + 0.277276i
\(120\) 0 0
\(121\) 2.80711 + 4.86205i 0.255192 + 0.442005i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.67565 0.775974
\(126\) 0 0
\(127\) 9.90354 0.878797 0.439399 0.898292i \(-0.355192\pi\)
0.439399 + 0.898292i \(0.355192\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.59220 14.8821i −0.750704 1.30026i −0.947482 0.319809i \(-0.896381\pi\)
0.196778 0.980448i \(-0.436952\pi\)
\(132\) 0 0
\(133\) −8.19964 + 12.2377i −0.710999 + 1.06115i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.04696 + 13.9377i −0.687498 + 1.19078i 0.285147 + 0.958484i \(0.407958\pi\)
−0.972645 + 0.232298i \(0.925376\pi\)
\(138\) 0 0
\(139\) −1.11151 + 1.92519i −0.0942768 + 0.163292i −0.909307 0.416127i \(-0.863387\pi\)
0.815030 + 0.579419i \(0.196721\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.47422 + 9.48163i 0.457778 + 0.792894i
\(144\) 0 0
\(145\) 15.2519 26.4171i 1.26660 2.19382i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.46846 + 6.00755i 0.284147 + 0.492158i 0.972402 0.233312i \(-0.0749562\pi\)
−0.688255 + 0.725469i \(0.741623\pi\)
\(150\) 0 0
\(151\) 7.75834 13.4378i 0.631365 1.09356i −0.355908 0.934521i \(-0.615828\pi\)
0.987273 0.159035i \(-0.0508383\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.0297 + 26.0322i 1.20722 + 2.09096i
\(156\) 0 0
\(157\) 0.802110 0.0640154 0.0320077 0.999488i \(-0.489810\pi\)
0.0320077 + 0.999488i \(0.489810\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.84821 + 7.82862i 0.303281 + 0.616982i
\(162\) 0 0
\(163\) −1.77500 + 3.07438i −0.139028 + 0.240804i −0.927129 0.374742i \(-0.877731\pi\)
0.788101 + 0.615546i \(0.211065\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.865131 1.49845i 0.0669459 0.115954i −0.830610 0.556855i \(-0.812008\pi\)
0.897556 + 0.440901i \(0.145341\pi\)
\(168\) 0 0
\(169\) −4.62823 8.01633i −0.356018 0.616641i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.23458 −0.169892 −0.0849462 0.996386i \(-0.527072\pi\)
−0.0849462 + 0.996386i \(0.527072\pi\)
\(174\) 0 0
\(175\) −10.9835 + 16.3925i −0.830272 + 1.23916i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.350412 0.606931i −0.0261910 0.0453641i 0.852633 0.522511i \(-0.175004\pi\)
−0.878824 + 0.477146i \(0.841671\pi\)
\(180\) 0 0
\(181\) −19.6339 −1.45938 −0.729688 0.683780i \(-0.760335\pi\)
−0.729688 + 0.683780i \(0.760335\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.0497 1.47408
\(186\) 0 0
\(187\) 2.95636 0.216190
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.0858 1.16393 0.581963 0.813215i \(-0.302285\pi\)
0.581963 + 0.813215i \(0.302285\pi\)
\(192\) 0 0
\(193\) −0.585463 −0.0421426 −0.0210713 0.999778i \(-0.506708\pi\)
−0.0210713 + 0.999778i \(0.506708\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.2923 1.23203 0.616014 0.787735i \(-0.288746\pi\)
0.616014 + 0.787735i \(0.288746\pi\)
\(198\) 0 0
\(199\) 12.2119 + 21.1517i 0.865681 + 1.49940i 0.866369 + 0.499404i \(0.166448\pi\)
−0.000687656 1.00000i \(0.500219\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.0869 + 20.5203i 0.707960 + 1.44024i
\(204\) 0 0
\(205\) 11.7573 0.821164
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.46058 + 11.1900i 0.446888 + 0.774032i
\(210\) 0 0
\(211\) 5.58733 9.67754i 0.384648 0.666230i −0.607072 0.794647i \(-0.707656\pi\)
0.991720 + 0.128417i \(0.0409895\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.156772 + 0.271537i −0.0106918 + 0.0185187i
\(216\) 0 0
\(217\) −22.4822 1.50244i −1.52619 0.101992i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00981 −0.404263
\(222\) 0 0
\(223\) 1.32951 + 2.30277i 0.0890303 + 0.154205i 0.907101 0.420912i \(-0.138290\pi\)
−0.818071 + 0.575117i \(0.804957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.95786 + 10.3193i −0.395437 + 0.684917i −0.993157 0.116788i \(-0.962740\pi\)
0.597720 + 0.801705i \(0.296073\pi\)
\(228\) 0 0
\(229\) 14.8064 + 25.6454i 0.978434 + 1.69470i 0.668104 + 0.744068i \(0.267106\pi\)
0.310330 + 0.950629i \(0.399561\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.84417 + 3.19420i −0.120816 + 0.209259i −0.920090 0.391708i \(-0.871884\pi\)
0.799274 + 0.600967i \(0.205218\pi\)
\(234\) 0 0
\(235\) −12.4456 21.5563i −0.811859 1.40618i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.03590 13.9186i 0.519799 0.900319i −0.479936 0.877304i \(-0.659340\pi\)
0.999735 0.0230153i \(-0.00732663\pi\)
\(240\) 0 0
\(241\) −2.24933 + 3.89596i −0.144892 + 0.250961i −0.929333 0.369243i \(-0.879617\pi\)
0.784440 + 0.620204i \(0.212950\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.39658 22.8505i −0.600326 1.45986i
\(246\) 0 0
\(247\) −13.1333 22.7476i −0.835654 1.44740i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.2696 −1.09005 −0.545023 0.838421i \(-0.683479\pi\)
−0.545023 + 0.838421i \(0.683479\pi\)
\(252\) 0 0
\(253\) 7.65167 0.481057
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.41087 + 4.17574i 0.150386 + 0.260476i 0.931369 0.364076i \(-0.118615\pi\)
−0.780984 + 0.624552i \(0.785282\pi\)
\(258\) 0 0
\(259\) −8.36571 + 12.4856i −0.519820 + 0.775815i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.0452 + 24.3270i −0.866062 + 1.50006i −7.41948e−5 1.00000i \(0.500024\pi\)
−0.865988 + 0.500064i \(0.833310\pi\)
\(264\) 0 0
\(265\) −12.0647 + 20.8966i −0.741128 + 1.28367i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.4126 21.4993i −0.756810 1.31083i −0.944469 0.328599i \(-0.893423\pi\)
0.187659 0.982234i \(-0.439910\pi\)
\(270\) 0 0
\(271\) 4.79671 8.30815i 0.291379 0.504684i −0.682757 0.730646i \(-0.739219\pi\)
0.974136 + 0.225962i \(0.0725524\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.65398 + 14.9891i 0.521854 + 0.903878i
\(276\) 0 0
\(277\) −8.46914 + 14.6690i −0.508862 + 0.881374i 0.491086 + 0.871111i \(0.336600\pi\)
−0.999947 + 0.0102629i \(0.996733\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.4291 19.7958i −0.681805 1.18092i −0.974430 0.224693i \(-0.927862\pi\)
0.292625 0.956227i \(-0.405471\pi\)
\(282\) 0 0
\(283\) −8.35621 −0.496725 −0.248363 0.968667i \(-0.579892\pi\)
−0.248363 + 0.968667i \(0.579892\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.90570 + 7.32161i −0.289574 + 0.432181i
\(288\) 0 0
\(289\) 7.68860 13.3170i 0.452271 0.783356i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.16141 3.74368i 0.126271 0.218708i −0.795958 0.605352i \(-0.793032\pi\)
0.922229 + 0.386644i \(0.126366\pi\)
\(294\) 0 0
\(295\) 14.1093 + 24.4381i 0.821477 + 1.42284i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.5546 −0.899548
\(300\) 0 0
\(301\) −0.103682 0.210925i −0.00597610 0.0121575i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −23.5693 40.8233i −1.34958 2.33753i
\(306\) 0 0
\(307\) 9.22888 0.526720 0.263360 0.964698i \(-0.415169\pi\)
0.263360 + 0.964698i \(0.415169\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.1073 −1.08348 −0.541738 0.840548i \(-0.682233\pi\)
−0.541738 + 0.840548i \(0.682233\pi\)
\(312\) 0 0
\(313\) 5.67903 0.320997 0.160499 0.987036i \(-0.448690\pi\)
0.160499 + 0.987036i \(0.448690\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.2681 1.58770 0.793848 0.608116i \(-0.208075\pi\)
0.793848 + 0.608116i \(0.208075\pi\)
\(318\) 0 0
\(319\) 20.0565 1.12295
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.09266 −0.394646
\(324\) 0 0
\(325\) −17.5922 30.4705i −0.975838 1.69020i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.6167 + 1.24411i 1.02637 + 0.0685902i
\(330\) 0 0
\(331\) 6.68091 0.367216 0.183608 0.983000i \(-0.441222\pi\)
0.183608 + 0.983000i \(0.441222\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.8147 + 18.7317i 0.590872 + 1.02342i
\(336\) 0 0
\(337\) −3.49421 + 6.05215i −0.190342 + 0.329681i −0.945363 0.326018i \(-0.894293\pi\)
0.755022 + 0.655700i \(0.227626\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.88215 + 17.1164i −0.535148 + 0.926904i
\(342\) 0 0
\(343\) 18.1504 + 3.68279i 0.980030 + 0.198852i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.28821 0.444934 0.222467 0.974940i \(-0.428589\pi\)
0.222467 + 0.974940i \(0.428589\pi\)
\(348\) 0 0
\(349\) 3.05373 + 5.28921i 0.163462 + 0.283125i 0.936108 0.351712i \(-0.114400\pi\)
−0.772646 + 0.634837i \(0.781067\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.3604 + 23.1409i −0.711104 + 1.23167i 0.253340 + 0.967377i \(0.418471\pi\)
−0.964443 + 0.264290i \(0.914862\pi\)
\(354\) 0 0
\(355\) −2.29780 3.97991i −0.121955 0.211232i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.45603 4.25397i 0.129624 0.224516i −0.793907 0.608040i \(-0.791956\pi\)
0.923531 + 0.383523i \(0.125289\pi\)
\(360\) 0 0
\(361\) −5.99972 10.3918i −0.315775 0.546938i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.4551 40.6255i 1.22770 2.12643i
\(366\) 0 0
\(367\) −15.3532 + 26.5925i −0.801430 + 1.38812i 0.117245 + 0.993103i \(0.462594\pi\)
−0.918675 + 0.395015i \(0.870740\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.97901 16.2321i −0.414250 0.842730i
\(372\) 0 0
\(373\) −8.29190 14.3620i −0.429338 0.743635i 0.567477 0.823390i \(-0.307920\pi\)
−0.996815 + 0.0797543i \(0.974586\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −40.7716 −2.09985
\(378\) 0 0
\(379\) −4.08857 −0.210016 −0.105008 0.994471i \(-0.533487\pi\)
−0.105008 + 0.994471i \(0.533487\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.1769 26.2871i −0.775503 1.34321i −0.934511 0.355933i \(-0.884163\pi\)
0.159009 0.987277i \(-0.449170\pi\)
\(384\) 0 0
\(385\) −21.6237 1.44507i −1.10205 0.0736474i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.73382 + 3.00307i −0.0879082 + 0.152261i −0.906627 0.421934i \(-0.861352\pi\)
0.818719 + 0.574195i \(0.194685\pi\)
\(390\) 0 0
\(391\) −2.10007 + 3.63743i −0.106205 + 0.183953i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −17.6974 30.6529i −0.890455 1.54231i
\(396\) 0 0
\(397\) −7.04243 + 12.1979i −0.353450 + 0.612193i −0.986851 0.161630i \(-0.948325\pi\)
0.633402 + 0.773823i \(0.281658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.46593 9.46726i −0.272955 0.472772i 0.696662 0.717400i \(-0.254668\pi\)
−0.969617 + 0.244627i \(0.921334\pi\)
\(402\) 0 0
\(403\) 20.0888 34.7949i 1.00070 1.73326i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.59142 + 11.4167i 0.326725 + 0.565904i
\(408\) 0 0
\(409\) 15.9879 0.790553 0.395276 0.918562i \(-0.370649\pi\)
0.395276 + 0.918562i \(0.370649\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.1054 1.41043i −1.03853 0.0694029i
\(414\) 0 0
\(415\) −20.8331 + 36.0841i −1.02266 + 1.77130i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.56197 + 6.16951i −0.174014 + 0.301400i −0.939819 0.341671i \(-0.889007\pi\)
0.765806 + 0.643072i \(0.222340\pi\)
\(420\) 0 0
\(421\) −16.6326 28.8086i −0.810625 1.40404i −0.912427 0.409239i \(-0.865794\pi\)
0.101802 0.994805i \(-0.467539\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.50066 −0.460849
\(426\) 0 0
\(427\) 35.2561 + 2.35610i 1.70616 + 0.114019i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.62382 4.54459i −0.126385 0.218905i 0.795889 0.605443i \(-0.207004\pi\)
−0.922273 + 0.386538i \(0.873671\pi\)
\(432\) 0 0
\(433\) 22.1053 1.06231 0.531156 0.847274i \(-0.321758\pi\)
0.531156 + 0.847274i \(0.321758\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.3573 −0.878149
\(438\) 0 0
\(439\) −34.6165 −1.65216 −0.826079 0.563555i \(-0.809433\pi\)
−0.826079 + 0.563555i \(0.809433\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.40923 −0.209489 −0.104744 0.994499i \(-0.533402\pi\)
−0.104744 + 0.994499i \(0.533402\pi\)
\(444\) 0 0
\(445\) 3.96370 0.187897
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.6336 0.926568 0.463284 0.886210i \(-0.346671\pi\)
0.463284 + 0.886210i \(0.346671\pi\)
\(450\) 0 0
\(451\) 3.86525 + 6.69481i 0.182007 + 0.315246i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 43.9575 + 2.93759i 2.06076 + 0.137716i
\(456\) 0 0
\(457\) −30.8392 −1.44259 −0.721297 0.692626i \(-0.756454\pi\)
−0.721297 + 0.692626i \(0.756454\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.6297 + 23.6074i 0.634800 + 1.09951i 0.986557 + 0.163415i \(0.0522510\pi\)
−0.351757 + 0.936091i \(0.614416\pi\)
\(462\) 0 0
\(463\) 0.959750 1.66234i 0.0446034 0.0772553i −0.842862 0.538130i \(-0.819131\pi\)
0.887465 + 0.460875i \(0.152464\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.88655 8.46376i 0.226123 0.391656i −0.730533 0.682877i \(-0.760728\pi\)
0.956656 + 0.291221i \(0.0940616\pi\)
\(468\) 0 0
\(469\) −16.1772 1.08109i −0.746994 0.0499201i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.206158 −0.00947913
\(474\) 0 0
\(475\) −20.7619 35.9607i −0.952623 1.64999i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.68809 + 13.3162i −0.351278 + 0.608431i −0.986474 0.163920i \(-0.947586\pi\)
0.635196 + 0.772351i \(0.280919\pi\)
\(480\) 0 0
\(481\) −13.3993 23.2083i −0.610956 1.05821i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.3824 + 21.4470i −0.562258 + 0.973859i
\(486\) 0 0
\(487\) −5.18342 8.97794i −0.234883 0.406829i 0.724356 0.689427i \(-0.242137\pi\)
−0.959239 + 0.282597i \(0.908804\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.94718 + 12.0329i −0.313522 + 0.543035i −0.979122 0.203273i \(-0.934842\pi\)
0.665600 + 0.746308i \(0.268175\pi\)
\(492\) 0 0
\(493\) −5.50469 + 9.53440i −0.247919 + 0.429408i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.43717 + 0.229699i 0.154178 + 0.0103034i
\(498\) 0 0
\(499\) −1.70488 2.95294i −0.0763210 0.132192i 0.825339 0.564638i \(-0.190984\pi\)
−0.901660 + 0.432446i \(0.857651\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 43.8911 1.95701 0.978504 0.206227i \(-0.0661185\pi\)
0.978504 + 0.206227i \(0.0661185\pi\)
\(504\) 0 0
\(505\) 34.3821 1.52998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.6674 + 34.0649i 0.871742 + 1.50990i 0.860193 + 0.509968i \(0.170343\pi\)
0.0115483 + 0.999933i \(0.496324\pi\)
\(510\) 0 0
\(511\) 15.5121 + 31.5571i 0.686215 + 1.39600i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.1519 31.4400i 0.799869 1.38541i
\(516\) 0 0
\(517\) 8.18305 14.1735i 0.359890 0.623348i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.4779 21.6124i −0.546669 0.946858i −0.998500 0.0547547i \(-0.982562\pi\)
0.451831 0.892104i \(-0.350771\pi\)
\(522\) 0 0
\(523\) 15.1575 26.2536i 0.662792 1.14799i −0.317086 0.948397i \(-0.602704\pi\)
0.979879 0.199594i \(-0.0639622\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.42449 9.39550i −0.236295 0.409274i
\(528\) 0 0
\(529\) 6.06457 10.5041i 0.263677 0.456702i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.85744 13.6095i −0.340343 0.589492i
\(534\) 0 0
\(535\) −19.2151 −0.830742
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.92233 12.8628i 0.427385 0.554039i
\(540\) 0 0
\(541\) −14.2812 + 24.7357i −0.613996 + 1.06347i 0.376563 + 0.926391i \(0.377106\pi\)
−0.990560 + 0.137082i \(0.956228\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.47326 2.55177i 0.0631077 0.109306i
\(546\) 0 0
\(547\) −3.89233 6.74171i −0.166424 0.288255i 0.770736 0.637154i \(-0.219889\pi\)
−0.937160 + 0.348900i \(0.886555\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −48.1179 −2.04989
\(552\) 0 0
\(553\) 26.4727 + 1.76912i 1.12573 + 0.0752305i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.2470 + 40.2650i 0.985008 + 1.70608i 0.641900 + 0.766788i \(0.278146\pi\)
0.343108 + 0.939296i \(0.388520\pi\)
\(558\) 0 0
\(559\) 0.419086 0.0177254
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.9826 1.17933 0.589663 0.807650i \(-0.299261\pi\)
0.589663 + 0.807650i \(0.299261\pi\)
\(564\) 0 0
\(565\) 38.4641 1.61820
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.89957 −0.373090 −0.186545 0.982446i \(-0.559729\pi\)
−0.186545 + 0.982446i \(0.559729\pi\)
\(570\) 0 0
\(571\) 32.3304 1.35298 0.676492 0.736450i \(-0.263500\pi\)
0.676492 + 0.736450i \(0.263500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.5897 −1.02546
\(576\) 0 0
\(577\) −16.8414 29.1701i −0.701115 1.21437i −0.968075 0.250659i \(-0.919353\pi\)
0.266960 0.963707i \(-0.413981\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.7780 28.0294i −0.571610 1.16286i
\(582\) 0 0
\(583\) −15.8652 −0.657071
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.24076 2.14907i −0.0512118 0.0887015i 0.839283 0.543695i \(-0.182975\pi\)
−0.890495 + 0.454993i \(0.849642\pi\)
\(588\) 0 0
\(589\) 23.7085 41.0643i 0.976891 1.69202i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.0903 26.1371i 0.619684 1.07332i −0.369859 0.929088i \(-0.620594\pi\)
0.989543 0.144236i \(-0.0460725\pi\)
\(594\) 0 0
\(595\) 6.62177 9.88280i 0.271466 0.405155i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.4083 −0.670424 −0.335212 0.942143i \(-0.608808\pi\)
−0.335212 + 0.942143i \(0.608808\pi\)
\(600\) 0 0
\(601\) −2.96998 5.14416i −0.121148 0.209835i 0.799073 0.601235i \(-0.205324\pi\)
−0.920221 + 0.391400i \(0.871991\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.90793 17.1610i 0.402815 0.697695i
\(606\) 0 0
\(607\) −2.97573 5.15412i −0.120781 0.209199i 0.799295 0.600939i \(-0.205207\pi\)
−0.920076 + 0.391740i \(0.871873\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.6348 + 28.8124i −0.672974 + 1.16562i
\(612\) 0 0
\(613\) 15.5920 + 27.0062i 0.629756 + 1.09077i 0.987601 + 0.156988i \(0.0501783\pi\)
−0.357845 + 0.933781i \(0.616488\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.1437 19.3014i 0.448627 0.777045i −0.549670 0.835382i \(-0.685246\pi\)
0.998297 + 0.0583367i \(0.0185797\pi\)
\(618\) 0 0
\(619\) 17.2943 29.9547i 0.695118 1.20398i −0.275022 0.961438i \(-0.588685\pi\)
0.970141 0.242543i \(-0.0779814\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.65384 + 2.46831i −0.0662599 + 0.0988909i
\(624\) 0 0
\(625\) 3.33422 + 5.77504i 0.133369 + 0.231002i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.23631 −0.288530
\(630\) 0 0
\(631\) 26.2933 1.04672 0.523360 0.852112i \(-0.324678\pi\)
0.523360 + 0.852112i \(0.324678\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17.4777 30.2723i −0.693582 1.20132i
\(636\) 0 0
\(637\) −20.1705 + 26.1480i −0.799185 + 1.03602i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.2673 + 28.1758i −0.642519 + 1.11288i 0.342349 + 0.939573i \(0.388777\pi\)
−0.984869 + 0.173303i \(0.944556\pi\)
\(642\) 0 0
\(643\) −5.21987 + 9.04107i −0.205851 + 0.356545i −0.950404 0.311019i \(-0.899330\pi\)
0.744552 + 0.667564i \(0.232663\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.685824 + 1.18788i 0.0269625 + 0.0467005i 0.879192 0.476468i \(-0.158083\pi\)
−0.852229 + 0.523168i \(0.824750\pi\)
\(648\) 0 0
\(649\) −9.27699 + 16.0682i −0.364154 + 0.630733i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.62567 6.27985i −0.141883 0.245749i 0.786322 0.617816i \(-0.211982\pi\)
−0.928206 + 0.372067i \(0.878649\pi\)
\(654\) 0 0
\(655\) −30.3269 + 52.5277i −1.18497 + 2.05243i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.3187 23.0686i −0.518822 0.898626i −0.999761 0.0218722i \(-0.993037\pi\)
0.480939 0.876754i \(-0.340296\pi\)
\(660\) 0 0
\(661\) −34.8199 −1.35434 −0.677168 0.735828i \(-0.736793\pi\)
−0.677168 + 0.735828i \(0.736793\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 51.8779 + 3.46689i 2.01174 + 0.134440i
\(666\) 0 0
\(667\) −14.2473 + 24.6770i −0.551657 + 0.955498i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15.4970 26.8416i 0.598255 1.03621i
\(672\) 0 0
\(673\) 8.23841 + 14.2693i 0.317567 + 0.550043i 0.979980 0.199096i \(-0.0638007\pi\)
−0.662412 + 0.749139i \(0.730467\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.1654 0.813450 0.406725 0.913551i \(-0.366671\pi\)
0.406725 + 0.913551i \(0.366671\pi\)
\(678\) 0 0
\(679\) −8.18916 16.6596i −0.314271 0.639339i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.0756 + 24.3796i 0.538587 + 0.932859i 0.998980 + 0.0451447i \(0.0143749\pi\)
−0.460394 + 0.887715i \(0.652292\pi\)
\(684\) 0 0
\(685\) 56.8049 2.17040
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 32.2515 1.22869
\(690\) 0 0
\(691\) −19.0796 −0.725822 −0.362911 0.931824i \(-0.618217\pi\)
−0.362911 + 0.931824i \(0.618217\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.84632 0.297628
\(696\) 0 0
\(697\) −4.24341 −0.160731
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8508 −0.900834 −0.450417 0.892818i \(-0.648725\pi\)
−0.450417 + 0.892818i \(0.648725\pi\)
\(702\) 0 0
\(703\) −15.8136 27.3900i −0.596422 1.03303i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.3459 + 21.4108i −0.539532 + 0.805235i
\(708\) 0 0
\(709\) 20.0986 0.754817 0.377409 0.926047i \(-0.376815\pi\)
0.377409 + 0.926047i \(0.376815\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14.0397 24.3175i −0.525792 0.910698i
\(714\) 0 0
\(715\) 19.3217 33.4662i 0.722592 1.25157i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.29246 + 5.70270i −0.122788 + 0.212675i −0.920866 0.389879i \(-0.872517\pi\)
0.798078 + 0.602554i \(0.205850\pi\)
\(720\) 0 0
\(721\) 12.0048 + 24.4220i 0.447082 + 0.909524i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −64.4542 −2.39377
\(726\) 0 0
\(727\) −18.2342 31.5826i −0.676269 1.17133i −0.976096 0.217339i \(-0.930262\pi\)
0.299827 0.953994i \(-0.403071\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.0565818 0.0980026i 0.00209276 0.00362476i
\(732\) 0 0
\(733\) −11.6824 20.2345i −0.431498 0.747377i 0.565504 0.824745i \(-0.308682\pi\)
−0.997003 + 0.0773684i \(0.975348\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.11077 + 12.3162i −0.261928 + 0.453673i
\(738\) 0 0
\(739\) −14.4596 25.0448i −0.531906 0.921288i −0.999306 0.0372422i \(-0.988143\pi\)
0.467400 0.884046i \(-0.345191\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.6794 20.2292i 0.428474 0.742139i −0.568264 0.822847i \(-0.692385\pi\)
0.996738 + 0.0807074i \(0.0257179\pi\)
\(744\) 0 0
\(745\) 12.2422 21.2042i 0.448521 0.776860i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.01747 11.9658i 0.292952 0.437222i
\(750\) 0 0
\(751\) −0.856616 1.48370i −0.0312584 0.0541411i 0.849973 0.526826i \(-0.176618\pi\)
−0.881231 + 0.472685i \(0.843285\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −54.7675 −1.99319
\(756\) 0 0
\(757\) 28.4587 1.03435 0.517175 0.855880i \(-0.326984\pi\)
0.517175 + 0.855880i \(0.326984\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.0525 29.5358i −0.618154 1.07067i −0.989822 0.142308i \(-0.954548\pi\)
0.371669 0.928365i \(-0.378786\pi\)
\(762\) 0 0
\(763\) 0.974346 + 1.98216i 0.0352737 + 0.0717592i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.8587 32.6642i 0.680947 1.17943i
\(768\) 0 0
\(769\) 2.48467 4.30357i 0.0895995 0.155191i −0.817742 0.575584i \(-0.804775\pi\)
0.907342 + 0.420394i \(0.138108\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.74814 + 9.95607i 0.206746 + 0.358095i 0.950688 0.310150i \(-0.100379\pi\)
−0.743941 + 0.668245i \(0.767046\pi\)
\(774\) 0 0
\(775\) 31.7576 55.0058i 1.14077 1.97587i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.27320 16.0617i −0.332247 0.575469i
\(780\) 0 0
\(781\) 1.51082 2.61682i 0.0540615 0.0936373i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.41556 2.45182i −0.0505235 0.0875092i
\(786\) 0 0
\(787\) −48.6011 −1.73244 −0.866221 0.499661i \(-0.833458\pi\)
−0.866221 + 0.499661i \(0.833458\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.0491 + 23.9527i −0.570639 + 0.851661i
\(792\) 0 0
\(793\) −31.5030 + 54.5647i −1.11870 + 1.93765i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.8556 + 29.1947i −0.597056 + 1.03413i 0.396198 + 0.918165i \(0.370330\pi\)
−0.993253 + 0.115965i \(0.963004\pi\)