Properties

Label 3024.2.q.j
Level 3024
Weight 2
Character orbit 3024.q
Analytic conductor 24.147
Analytic rank 0
Dimension 14
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - 5 x^{12} - 3 x^{11} + 7 x^{10} + 30 x^{9} - 117 x^{7} + 270 x^{5} + 189 x^{4} - 243 x^{3} - 1215 x^{2} + 2187\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{3} q^{5} + ( -\beta_{5} - \beta_{12} ) q^{7} +O(q^{10})\) \( q -\beta_{3} q^{5} + ( -\beta_{5} - \beta_{12} ) q^{7} -\beta_{13} q^{11} -\beta_{11} q^{13} + ( -\beta_{1} + \beta_{5} - \beta_{6} + \beta_{9} + \beta_{12} ) q^{17} + ( -1 + \beta_{1} + \beta_{7} + \beta_{13} ) q^{19} + ( -\beta_{2} + \beta_{5} - \beta_{8} + \beta_{9} + \beta_{10} ) q^{23} + ( \beta_{5} - \beta_{6} - 2 \beta_{7} - \beta_{10} + \beta_{13} ) q^{25} + ( -\beta_{1} + \beta_{2} - \beta_{3} + \beta_{5} + \beta_{10} ) q^{29} + ( -2 - \beta_{2} + \beta_{4} + \beta_{5} + \beta_{6} + 2 \beta_{9} + \beta_{10} - \beta_{11} + \beta_{12} - 2 \beta_{13} ) q^{31} + ( -3 + 2 \beta_{1} + \beta_{3} + 2 \beta_{6} + \beta_{10} - \beta_{11} ) q^{35} + ( 2 - 2 \beta_{1} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} - \beta_{10} + \beta_{13} ) q^{37} + ( 4 - 4 \beta_{1} - \beta_{4} + \beta_{6} - \beta_{8} + \beta_{12} ) q^{41} + ( -\beta_{1} - \beta_{3} - \beta_{9} ) q^{43} + ( 1 - \beta_{2} - \beta_{5} - \beta_{6} - \beta_{10} - \beta_{11} - \beta_{12} ) q^{47} + ( -2 + 2 \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} - \beta_{11} + \beta_{12} ) q^{49} + ( 3 \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{6} - 2 \beta_{10} + 2 \beta_{12} ) q^{53} + ( 2 + \beta_{2} - 2 \beta_{3} + \beta_{4} + 2 \beta_{7} - \beta_{10} + \beta_{11} - \beta_{12} ) q^{55} + ( 3 + 2 \beta_{2} - \beta_{3} - \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} + 2 \beta_{11} + \beta_{13} ) q^{59} + ( 1 - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} - \beta_{9} + \beta_{13} ) q^{61} + ( 2 - \beta_{3} - 2 \beta_{4} - \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} + 2 \beta_{10} + 2 \beta_{12} + \beta_{13} ) q^{65} + ( 2 + \beta_{3} - \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} - \beta_{9} + \beta_{13} ) q^{67} + ( \beta_{2} - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} - \beta_{9} + \beta_{11} + \beta_{13} ) q^{71} + ( 4 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{5} + \beta_{8} - \beta_{10} ) q^{73} + ( 3 - \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{9} + \beta_{11} + \beta_{13} ) q^{77} + ( -2 + \beta_{3} - \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - \beta_{7} - \beta_{9} + \beta_{10} + \beta_{12} + \beta_{13} ) q^{79} + ( -2 \beta_{1} + \beta_{2} - \beta_{3} - 3 \beta_{6} + 2 \beta_{8} - 3 \beta_{10} + 3 \beta_{12} ) q^{83} + ( 3 - 3 \beta_{1} - \beta_{4} - \beta_{6} - 2 \beta_{7} - \beta_{8} + \beta_{11} - \beta_{12} ) q^{85} + ( 2 - 2 \beta_{1} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} - 2 \beta_{10} ) q^{89} + ( 3 - \beta_{1} + \beta_{2} + 3 \beta_{3} - \beta_{4} - 2 \beta_{6} - 3 \beta_{7} + \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} - \beta_{12} + 2 \beta_{13} ) q^{91} + ( 3 - \beta_{2} + \beta_{3} - \beta_{4} - \beta_{7} + \beta_{9} + 2 \beta_{10} - \beta_{11} + 2 \beta_{12} - \beta_{13} ) q^{95} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{6} + \beta_{8} - \beta_{9} + \beta_{10} - \beta_{12} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q + 2q^{5} - 6q^{7} + O(q^{10}) \) \( 14q + 2q^{5} - 6q^{7} + 2q^{11} + 2q^{13} - 2q^{17} - 7q^{19} + 11q^{23} - 9q^{25} - q^{29} - 2q^{31} - 19q^{35} + 10q^{37} + 33q^{41} - 7q^{43} + 6q^{47} - 4q^{49} + 15q^{53} + 28q^{55} + 28q^{59} + 20q^{61} + 30q^{65} + 12q^{67} + 2q^{71} + 21q^{73} + 47q^{77} - 20q^{79} - 25q^{83} + 8q^{85} + 6q^{89} - 2q^{91} + 56q^{95} - 18q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{14} - 5 x^{12} - 3 x^{11} + 7 x^{10} + 30 x^{9} - 117 x^{7} + 270 x^{5} + 189 x^{4} - 243 x^{3} - 1215 x^{2} + 2187\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -35 \nu^{13} + 72 \nu^{12} + 157 \nu^{11} + 312 \nu^{10} - 290 \nu^{9} - 1383 \nu^{8} + 1143 \nu^{7} + 3393 \nu^{6} - 2025 \nu^{5} - 8802 \nu^{4} - 9288 \nu^{3} + 23814 \nu^{2} + 63180 \nu - 3645 \)\()/43011\)
\(\beta_{2}\)\(=\)\((\)\( 10 \nu^{13} - 45 \nu^{12} + 196 \nu^{11} + 249 \nu^{10} + 136 \nu^{9} + 84 \nu^{8} - 2274 \nu^{7} + 324 \nu^{6} + 8694 \nu^{5} - 5292 \nu^{4} - 4104 \nu^{3} - 11502 \nu^{2} + 9072 \nu + 140940 \)\()/14337\)
\(\beta_{3}\)\(=\)\((\)\( 26 \nu^{13} + 7 \nu^{12} - 70 \nu^{11} - 266 \nu^{10} - 301 \nu^{9} + 955 \nu^{8} + 846 \nu^{7} - 2529 \nu^{6} - 2574 \nu^{5} - 864 \nu^{4} + 14985 \nu^{3} + 11124 \nu^{2} - 48438 \nu - 30618 \)\()/14337\)
\(\beta_{4}\)\(=\)\((\)\( 25 \nu^{13} + 294 \nu^{12} + 109 \nu^{11} - 924 \nu^{10} - 1715 \nu^{9} - 351 \nu^{8} + 7785 \nu^{7} + 2772 \nu^{6} - 18036 \nu^{5} - 18279 \nu^{4} + 25056 \nu^{3} + 96876 \nu^{2} + 92583 \nu - 218700 \)\()/43011\)
\(\beta_{5}\)\(=\)\((\)\( 56 \nu^{13} - 441 \nu^{12} + 62 \nu^{11} + 1227 \nu^{10} + 761 \nu^{9} - 165 \nu^{8} - 8622 \nu^{7} - 1638 \nu^{6} + 26190 \nu^{5} - 2538 \nu^{4} - 35424 \nu^{3} - 61722 \nu^{2} - 22113 \nu + 293058 \)\()/43011\)
\(\beta_{6}\)\(=\)\((\)\( -44 \nu^{13} + 78 \nu^{12} + 145 \nu^{11} - 150 \nu^{10} - 392 \nu^{9} - 387 \nu^{8} + 1428 \nu^{7} + 2601 \nu^{6} - 5895 \nu^{5} - 2997 \nu^{4} + 9612 \nu^{3} + 14418 \nu^{2} + 15633 \nu - 48114 \)\()/14337\)
\(\beta_{7}\)\(=\)\((\)\( -73 \nu^{13} - 360 \nu^{12} - 40 \nu^{11} + 804 \nu^{10} + 1703 \nu^{9} - 417 \nu^{8} - 8694 \nu^{7} + 1413 \nu^{6} + 19845 \nu^{5} - 2295 \nu^{4} - 32022 \nu^{3} - 98901 \nu^{2} - 11178 \nu + 239841 \)\()/43011\)
\(\beta_{8}\)\(=\)\((\)\( -73 \nu^{13} + 69 \nu^{12} - 28 \nu^{11} + 36 \nu^{10} - 373 \nu^{9} - 1446 \nu^{8} + 2154 \nu^{7} + 3609 \nu^{6} - 4428 \nu^{5} - 405 \nu^{4} - 6831 \nu^{3} + 6156 \nu^{2} + 15633 \nu - 121257 \)\()/14337\)
\(\beta_{9}\)\(=\)\((\)\( -142 \nu^{13} - 351 \nu^{12} + 386 \nu^{11} + 1398 \nu^{10} + 869 \nu^{9} - 2478 \nu^{8} - 4455 \nu^{7} + 10485 \nu^{6} + 22356 \nu^{5} - 16389 \nu^{4} - 46764 \nu^{3} - 43011 \nu^{2} + 54432 \nu + 187353 \)\()/43011\)
\(\beta_{10}\)\(=\)\((\)\( 49 \nu^{13} + 125 \nu^{12} - 77 \nu^{11} - 313 \nu^{10} - 368 \nu^{9} + 140 \nu^{8} + 2352 \nu^{7} - 1557 \nu^{6} - 5805 \nu^{5} + 1998 \nu^{4} + 12177 \nu^{3} + 27027 \nu^{2} - 4050 \nu - 68283 \)\()/14337\)
\(\beta_{11}\)\(=\)\((\)\( -281 \nu^{13} - 6 \nu^{12} + 208 \nu^{11} + 657 \nu^{10} - 500 \nu^{9} - 6555 \nu^{8} + 4806 \nu^{7} + 12870 \nu^{6} - 10800 \nu^{5} - 15849 \nu^{4} - 54972 \nu^{3} + 54756 \nu^{2} + 152361 \nu - 334611 \)\()/43011\)
\(\beta_{12}\)\(=\)\((\)\( 179 \nu^{13} + 471 \nu^{12} - 769 \nu^{11} - 2352 \nu^{10} - 763 \nu^{9} + 5184 \nu^{8} + 9288 \nu^{7} - 16785 \nu^{6} - 31266 \nu^{5} + 33021 \nu^{4} + 101142 \nu^{3} + 55485 \nu^{2} - 162081 \nu - 324405 \)\()/43011\)
\(\beta_{13}\)\(=\)\((\)\( 443 \nu^{13} + 546 \nu^{12} - 1099 \nu^{11} - 2736 \nu^{10} - 2092 \nu^{9} + 8283 \nu^{8} + 12042 \nu^{7} - 22779 \nu^{6} - 30429 \nu^{5} + 40473 \nu^{4} + 140022 \nu^{3} + 146934 \nu^{2} - 253692 \nu - 414072 \)\()/43011\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{12} - \beta_{10} + \beta_{5} + \beta_{4} - \beta_{3} + \beta_{1} - 1\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{13} - 2 \beta_{12} + 2 \beta_{11} - \beta_{10} - \beta_{9} - \beta_{8} + \beta_{7} - 2 \beta_{5} - \beta_{4} + \beta_{2} + 4\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(4 \beta_{12} + 2 \beta_{10} + 3 \beta_{9} + 3 \beta_{7} + 3 \beta_{6} + 4 \beta_{5} + \beta_{4} - \beta_{3} + 4 \beta_{1} - 4\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(2 \beta_{13} + 2 \beta_{11} - 3 \beta_{10} - \beta_{9} - 4 \beta_{7} + 2 \beta_{6} + 2 \beta_{5} - 2 \beta_{4} - 5 \beta_{3} + \beta_{2} - 7 \beta_{1} + 9\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(3 \beta_{13} + 3 \beta_{12} + 3 \beta_{11} - 3 \beta_{10} + 3 \beta_{9} + 4 \beta_{8} + \beta_{7} - 4 \beta_{6} - \beta_{5} + 3 \beta_{4} - 3 \beta_{3} + 9 \beta_{2} - 6 \beta_{1} - 11\)\()/3\)
\(\nu^{6}\)\(=\)\((\)\(8 \beta_{13} - 19 \beta_{12} - 7 \beta_{11} + 7 \beta_{10} + 5 \beta_{9} + \beta_{8} + 9 \beta_{7} + 7 \beta_{6} - 12 \beta_{5} - 4 \beta_{3} - 8 \beta_{2} - 17 \beta_{1} + 23\)\()/3\)
\(\nu^{7}\)\(=\)\((\)\(-21 \beta_{13} + 32 \beta_{12} - 12 \beta_{11} + 7 \beta_{10} + 39 \beta_{9} + 2 \beta_{8} - 34 \beta_{7} - 14 \beta_{6} + 12 \beta_{5} + 8 \beta_{4} + \beta_{3} - 9 \beta_{2} - 4 \beta_{1} + 18\)\()/3\)
\(\nu^{8}\)\(=\)\((\)\(17 \beta_{13} - 26 \beta_{12} - 22 \beta_{11} - 85 \beta_{10} - 13 \beta_{9} - \beta_{8} - 32 \beta_{7} - 27 \beta_{6} - 44 \beta_{5} + 2 \beta_{4} - 11 \beta_{2} + 51 \beta_{1} - 50\)\()/3\)
\(\nu^{9}\)\(=\)\((\)\(-9 \beta_{13} + \beta_{12} + 18 \beta_{11} + 86 \beta_{10} + 75 \beta_{9} - 69 \beta_{8} + 42 \beta_{7} - 9 \beta_{6} - 92 \beta_{5} - 47 \beta_{4} + 11 \beta_{3} - 18 \beta_{2} + 10 \beta_{1} - 115\)\()/3\)
\(\nu^{10}\)\(=\)\((\)\(-16 \beta_{13} + 72 \beta_{12} - 79 \beta_{11} - 48 \beta_{10} + 62 \beta_{9} + 9 \beta_{8} - 58 \beta_{7} + 2 \beta_{6} + 74 \beta_{5} - 74 \beta_{4} + 31 \beta_{3} - 80 \beta_{2} + 470 \beta_{1} - 306\)\()/3\)
\(\nu^{11}\)\(=\)\((\)\(-150 \beta_{13} + 57 \beta_{12} + 12 \beta_{11} + 105 \beta_{10} + 66 \beta_{9} - 122 \beta_{8} - 332 \beta_{7} + 77 \beta_{6} + 26 \beta_{5} - 114 \beta_{4} + 15 \beta_{3} + 27 \beta_{2} - 348 \beta_{1} - 650\)\()/3\)
\(\nu^{12}\)\(=\)\((\)\(134 \beta_{13} - 280 \beta_{12} - 97 \beta_{11} - 56 \beta_{10} - 328 \beta_{9} + 199 \beta_{8} + 198 \beta_{7} - 200 \beta_{6} - 534 \beta_{5} - 252 \beta_{4} + 77 \beta_{3} + 271 \beta_{2} + 604 \beta_{1} - 598\)\()/3\)
\(\nu^{13}\)\(=\)\((\)\(-363 \beta_{13} - 247 \beta_{12} - 516 \beta_{11} + 1393 \beta_{10} + 426 \beta_{9} - 196 \beta_{8} - 88 \beta_{7} + 247 \beta_{6} + 345 \beta_{5} + 71 \beta_{4} - 53 \beta_{3} - 612 \beta_{2} - 841 \beta_{1} - 1089\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-1 + \beta_{1}\) \(1\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2305.1
−1.58203 + 0.705117i
−0.473632 1.66604i
1.13119 + 1.31165i
1.64515 0.541745i
−1.73040 0.0755709i
1.68442 + 0.403398i
−0.674693 + 1.59524i
−1.58203 0.705117i
−0.473632 + 1.66604i
1.13119 1.31165i
1.64515 + 0.541745i
−1.73040 + 0.0755709i
1.68442 0.403398i
−0.674693 1.59524i
0 0 0 −1.26013 2.18261i 0 −0.527655 2.59260i 0 0 0
2305.2 0 0 0 −0.951504 1.64805i 0 −2.11495 + 1.58965i 0 0 0
2305.3 0 0 0 −0.764702 1.32450i 0 1.91978 1.82056i 0 0 0
2305.4 0 0 0 −0.381918 0.661502i 0 −2.62892 0.297968i 0 0 0
2305.5 0 0 0 0.483929 + 0.838189i 0 1.52054 + 2.16517i 0 0 0
2305.6 0 0 0 1.80173 + 3.12069i 0 1.02133 + 2.44067i 0 0 0
2305.7 0 0 0 2.07260 + 3.58985i 0 −2.19013 1.48437i 0 0 0
2881.1 0 0 0 −1.26013 + 2.18261i 0 −0.527655 + 2.59260i 0 0 0
2881.2 0 0 0 −0.951504 + 1.64805i 0 −2.11495 1.58965i 0 0 0
2881.3 0 0 0 −0.764702 + 1.32450i 0 1.91978 + 1.82056i 0 0 0
2881.4 0 0 0 −0.381918 + 0.661502i 0 −2.62892 + 0.297968i 0 0 0
2881.5 0 0 0 0.483929 0.838189i 0 1.52054 2.16517i 0 0 0
2881.6 0 0 0 1.80173 3.12069i 0 1.02133 2.44067i 0 0 0
2881.7 0 0 0 2.07260 3.58985i 0 −2.19013 + 1.48437i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2881.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.q.j 14
3.b odd 2 1 1008.2.q.j 14
4.b odd 2 1 756.2.i.b 14
7.c even 3 1 3024.2.t.j 14
9.c even 3 1 3024.2.t.j 14
9.d odd 6 1 1008.2.t.j 14
12.b even 2 1 252.2.i.b 14
21.h odd 6 1 1008.2.t.j 14
28.d even 2 1 5292.2.i.i 14
28.f even 6 1 5292.2.j.g 14
28.f even 6 1 5292.2.l.i 14
28.g odd 6 1 756.2.l.b 14
28.g odd 6 1 5292.2.j.h 14
36.f odd 6 1 756.2.l.b 14
36.f odd 6 1 2268.2.k.f 14
36.h even 6 1 252.2.l.b yes 14
36.h even 6 1 2268.2.k.e 14
63.h even 3 1 inner 3024.2.q.j 14
63.j odd 6 1 1008.2.q.j 14
84.h odd 2 1 1764.2.i.i 14
84.j odd 6 1 1764.2.j.h 14
84.j odd 6 1 1764.2.l.i 14
84.n even 6 1 252.2.l.b yes 14
84.n even 6 1 1764.2.j.g 14
252.n even 6 1 5292.2.j.g 14
252.o even 6 1 1764.2.j.g 14
252.o even 6 1 2268.2.k.e 14
252.r odd 6 1 1764.2.i.i 14
252.s odd 6 1 1764.2.l.i 14
252.u odd 6 1 756.2.i.b 14
252.bb even 6 1 252.2.i.b 14
252.bi even 6 1 5292.2.l.i 14
252.bj even 6 1 5292.2.i.i 14
252.bl odd 6 1 2268.2.k.f 14
252.bl odd 6 1 5292.2.j.h 14
252.bn odd 6 1 1764.2.j.h 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.i.b 14 12.b even 2 1
252.2.i.b 14 252.bb even 6 1
252.2.l.b yes 14 36.h even 6 1
252.2.l.b yes 14 84.n even 6 1
756.2.i.b 14 4.b odd 2 1
756.2.i.b 14 252.u odd 6 1
756.2.l.b 14 28.g odd 6 1
756.2.l.b 14 36.f odd 6 1
1008.2.q.j 14 3.b odd 2 1
1008.2.q.j 14 63.j odd 6 1
1008.2.t.j 14 9.d odd 6 1
1008.2.t.j 14 21.h odd 6 1
1764.2.i.i 14 84.h odd 2 1
1764.2.i.i 14 252.r odd 6 1
1764.2.j.g 14 84.n even 6 1
1764.2.j.g 14 252.o even 6 1
1764.2.j.h 14 84.j odd 6 1
1764.2.j.h 14 252.bn odd 6 1
1764.2.l.i 14 84.j odd 6 1
1764.2.l.i 14 252.s odd 6 1
2268.2.k.e 14 36.h even 6 1
2268.2.k.e 14 252.o even 6 1
2268.2.k.f 14 36.f odd 6 1
2268.2.k.f 14 252.bl odd 6 1
3024.2.q.j 14 1.a even 1 1 trivial
3024.2.q.j 14 63.h even 3 1 inner
3024.2.t.j 14 7.c even 3 1
3024.2.t.j 14 9.c even 3 1
5292.2.i.i 14 28.d even 2 1
5292.2.i.i 14 252.bj even 6 1
5292.2.j.g 14 28.f even 6 1
5292.2.j.g 14 252.n even 6 1
5292.2.j.h 14 28.g odd 6 1
5292.2.j.h 14 252.bl odd 6 1
5292.2.l.i 14 28.f even 6 1
5292.2.l.i 14 252.bi even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\(T_{5}^{14} - \cdots\)
\(T_{11}^{14} - \cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 - 2 T - 11 T^{2} + 66 T^{3} - 25 T^{4} - 533 T^{5} + 1540 T^{6} + 603 T^{7} - 11032 T^{8} + 21691 T^{9} + 19925 T^{10} - 156945 T^{11} + 233805 T^{12} + 385788 T^{13} - 1886454 T^{14} + 1928940 T^{15} + 5845125 T^{16} - 19618125 T^{17} + 12453125 T^{18} + 67784375 T^{19} - 172375000 T^{20} + 47109375 T^{21} + 601562500 T^{22} - 1041015625 T^{23} - 244140625 T^{24} + 3222656250 T^{25} - 2685546875 T^{26} - 2441406250 T^{27} + 6103515625 T^{28} \)
$7$ \( 1 + 6 T + 20 T^{2} + 77 T^{3} + 309 T^{4} + 961 T^{5} + 2706 T^{6} + 7572 T^{7} + 18942 T^{8} + 47089 T^{9} + 105987 T^{10} + 184877 T^{11} + 336140 T^{12} + 705894 T^{13} + 823543 T^{14} \)
$11$ \( 1 - 2 T - 32 T^{2} + 42 T^{3} + 722 T^{4} - 614 T^{5} - 9113 T^{6} - 2733 T^{7} + 72959 T^{8} + 126076 T^{9} + 256457 T^{10} - 2291538 T^{11} - 13152543 T^{12} + 8654619 T^{13} + 213521742 T^{14} + 95200809 T^{15} - 1591457703 T^{16} - 3050037078 T^{17} + 3754786937 T^{18} + 20304665876 T^{19} + 129251318999 T^{20} - 53258438343 T^{21} - 1953452482553 T^{22} - 1447779882274 T^{23} + 18726820561922 T^{24} + 11983090165662 T^{25} - 100429708055072 T^{26} - 69045424287862 T^{27} + 379749833583241 T^{28} \)
$13$ \( 1 - 2 T - 25 T^{2} - 20 T^{3} + 172 T^{4} + 1281 T^{5} + 1882 T^{6} - 1142 T^{7} - 27931 T^{8} - 309997 T^{9} + 9092 T^{10} + 1859069 T^{11} + 4530175 T^{12} + 5185603 T^{13} - 73974588 T^{14} + 67412839 T^{15} + 765599575 T^{16} + 4084374593 T^{17} + 259676612 T^{18} - 115099716121 T^{19} - 134817602179 T^{20} - 71658806414 T^{21} + 1535205216922 T^{22} + 13584363696813 T^{23} + 23711660598028 T^{24} - 35843207880740 T^{25} - 582452128062025 T^{26} - 605750213184506 T^{27} + 3937376385699289 T^{28} \)
$17$ \( 1 + 2 T - 65 T^{2} - 210 T^{3} + 2087 T^{4} + 9143 T^{5} - 37340 T^{6} - 240381 T^{7} + 293834 T^{8} + 4176065 T^{9} + 3382763 T^{10} - 47662233 T^{11} - 157347285 T^{12} + 273515658 T^{13} + 3170983122 T^{14} + 4649766186 T^{15} - 45473365365 T^{16} - 234164550729 T^{17} + 282531748523 T^{18} + 5929415122705 T^{19} + 7092438449546 T^{20} - 98637620554413 T^{21} - 260474782846940 T^{22} + 1084248954812071 T^{23} + 4207379270237063 T^{24} - 7197098224602930 T^{25} - 37870445419934465 T^{26} + 19809156065811874 T^{27} + 168377826559400929 T^{28} \)
$19$ \( 1 + 7 T - 54 T^{2} - 381 T^{3} + 1875 T^{4} + 9873 T^{5} - 65652 T^{6} - 221430 T^{7} + 1870425 T^{8} + 4319703 T^{9} - 46476858 T^{10} - 61637031 T^{11} + 1073881146 T^{12} + 457871775 T^{13} - 21789737442 T^{14} + 8699563725 T^{15} + 387671093706 T^{16} - 422768395629 T^{17} - 6056910611418 T^{18} + 10696012278597 T^{19} + 87995791969425 T^{20} - 197930019166770 T^{21} - 1115004880767732 T^{22} + 3185895640172067 T^{23} + 11495749233376875 T^{24} - 44382788640221439 T^{25} - 119519005629572694 T^{26} + 294370884235799413 T^{27} + 799006685782884121 T^{28} \)
$23$ \( 1 - 11 T - 8 T^{2} + 333 T^{3} + 401 T^{4} - 3407 T^{5} - 42005 T^{6} + 36987 T^{7} + 1121822 T^{8} + 103015 T^{9} - 29774440 T^{10} + 52947609 T^{11} + 527481093 T^{12} - 1421356596 T^{13} - 4817982924 T^{14} - 32691201708 T^{15} + 279037498197 T^{16} + 644213558703 T^{17} - 8332109064040 T^{18} + 663039874145 T^{19} + 166069917069758 T^{20} + 125934278808189 T^{21} - 3289452936728405 T^{22} - 6136527117604441 T^{23} + 16612030996673249 T^{24} + 317285649385337691 T^{25} - 175316995456162568 T^{26} - 5544399981301141213 T^{27} + 11592836324538749809 T^{28} \)
$29$ \( 1 + T - 89 T^{2} - 606 T^{3} + 3413 T^{4} + 45595 T^{5} + 49603 T^{6} - 1643802 T^{7} - 7893892 T^{8} + 19552444 T^{9} + 271585946 T^{10} + 420585531 T^{11} - 3441402105 T^{12} - 10956432363 T^{13} + 10513309734 T^{14} - 317736538527 T^{15} - 2894219170305 T^{16} + 10257660515559 T^{17} + 192087579472826 T^{18} + 401043092198156 T^{19} - 4695471055055332 T^{20} - 28355381176486818 T^{21} + 24813722822104483 T^{22} + 661453320769747055 T^{23} + 1435873787253586013 T^{24} - 7393508918017732374 T^{25} - 31489515705286744649 T^{26} + 10260628712958602189 T^{27} + \)\(29\!\cdots\!81\)\( T^{28} \)
$31$ \( ( 1 + T + 86 T^{2} + 194 T^{3} + 4879 T^{4} + 9670 T^{5} + 191454 T^{6} + 403758 T^{7} + 5935074 T^{8} + 9292870 T^{9} + 145350289 T^{10} + 179163074 T^{11} + 2462106986 T^{12} + 887503681 T^{13} + 27512614111 T^{14} )^{2} \)
$37$ \( 1 - 10 T - 84 T^{2} + 1296 T^{3} + 1134 T^{4} - 66630 T^{5} + 77382 T^{6} + 1851174 T^{7} - 1251993 T^{8} - 21837810 T^{9} - 268575252 T^{10} - 774884982 T^{11} + 27666538119 T^{12} + 26159905206 T^{13} - 1381876923558 T^{14} + 967916492622 T^{15} + 37875490684911 T^{16} - 39250248993246 T^{17} - 503353262863572 T^{18} - 1514320157614170 T^{19} - 3212271503983137 T^{20} + 175735422719804142 T^{21} + 271802685103314822 T^{22} - 8659350722545980510 T^{23} + 5452934678321840766 T^{24} + \)\(23\!\cdots\!48\)\( T^{25} - \)\(55\!\cdots\!04\)\( T^{26} - \)\(24\!\cdots\!70\)\( T^{27} + \)\(90\!\cdots\!89\)\( T^{28} \)
$41$ \( 1 - 33 T + 463 T^{2} - 3882 T^{3} + 26359 T^{4} - 177381 T^{5} + 987377 T^{6} - 3338436 T^{7} - 1489480 T^{8} + 146370792 T^{9} - 1532374696 T^{10} + 10553354379 T^{11} - 66691501599 T^{12} + 460808734581 T^{13} - 3110830401306 T^{14} + 18893158117821 T^{15} - 112108414187919 T^{16} + 727347737155059 T^{17} - 4330124653343656 T^{18} + 16957963898481192 T^{19} - 7075185264884680 T^{20} - 650174679078190116 T^{21} + 7884131517953805617 T^{22} - 58071334904735196141 T^{23} + \)\(35\!\cdots\!59\)\( T^{24} - \)\(21\!\cdots\!62\)\( T^{25} + \)\(10\!\cdots\!03\)\( T^{26} - \)\(30\!\cdots\!93\)\( T^{27} + \)\(37\!\cdots\!61\)\( T^{28} \)
$43$ \( 1 + 7 T - 222 T^{2} - 1221 T^{3} + 30003 T^{4} + 121065 T^{5} - 2964828 T^{6} - 8400318 T^{7} + 232132089 T^{8} + 430114695 T^{9} - 14993117802 T^{10} - 15328887375 T^{11} + 817956723570 T^{12} + 259275458991 T^{13} - 38016795252930 T^{14} + 11148844736613 T^{15} + 1512401981880930 T^{16} - 1218753848524125 T^{17} - 51258486134595402 T^{18} + 63230491623369885 T^{19} + 1467391209891779361 T^{20} - 2283362771617132026 T^{21} - 34653503452639217628 T^{22} + 60846374564133897795 T^{23} + \)\(64\!\cdots\!47\)\( T^{24} - \)\(11\!\cdots\!47\)\( T^{25} - \)\(88\!\cdots\!22\)\( T^{26} + \)\(12\!\cdots\!01\)\( T^{27} + \)\(73\!\cdots\!49\)\( T^{28} \)
$47$ \( ( 1 - 3 T + 224 T^{2} - 711 T^{3} + 24846 T^{4} - 72810 T^{5} + 1742359 T^{6} - 4337544 T^{7} + 81890873 T^{8} - 160837290 T^{9} + 2579586258 T^{10} - 3469453191 T^{11} + 51373281568 T^{12} - 32337645987 T^{13} + 506623120463 T^{14} )^{2} \)
$53$ \( 1 - 15 T - 44 T^{2} + 1563 T^{3} + 1621 T^{4} - 132831 T^{5} + 280796 T^{6} + 6875916 T^{7} - 32544895 T^{8} - 334617081 T^{9} + 3332374934 T^{10} + 9404405181 T^{11} - 219667861866 T^{12} - 268474558113 T^{13} + 14089335458730 T^{14} - 14229151579989 T^{15} - 617047023981594 T^{16} + 1400099630131737 T^{17} + 26294041101603254 T^{18} - 139935355155015933 T^{19} - 721336805685386455 T^{20} + 8077215121783465692 T^{21} + 17482272028748523356 T^{22} - \)\(43\!\cdots\!23\)\( T^{23} + \)\(28\!\cdots\!29\)\( T^{24} + \)\(14\!\cdots\!11\)\( T^{25} - \)\(21\!\cdots\!04\)\( T^{26} - \)\(39\!\cdots\!95\)\( T^{27} + \)\(13\!\cdots\!69\)\( T^{28} \)
$59$ \( ( 1 - 14 T + 237 T^{2} - 2625 T^{3} + 28687 T^{4} - 249069 T^{5} + 2197811 T^{6} - 16839260 T^{7} + 129670849 T^{8} - 867009189 T^{9} + 5891707373 T^{10} - 31808072625 T^{11} + 169437058863 T^{12} - 590527470974 T^{13} + 2488651484819 T^{14} )^{2} \)
$61$ \( ( 1 - 10 T + 377 T^{2} - 2981 T^{3} + 62533 T^{4} - 402217 T^{5} + 6040473 T^{6} - 31437684 T^{7} + 368468853 T^{8} - 1496649457 T^{9} + 14193802873 T^{10} - 41274452021 T^{11} + 318412805477 T^{12} - 515203743610 T^{13} + 3142742836021 T^{14} )^{2} \)
$67$ \( ( 1 - 6 T + 344 T^{2} - 1114 T^{3} + 48744 T^{4} - 55499 T^{5} + 4192269 T^{6} - 1055346 T^{7} + 280882023 T^{8} - 249135011 T^{9} + 14660391672 T^{10} - 22448348794 T^{11} + 464443036808 T^{12} - 542750293014 T^{13} + 6060711605323 T^{14} )^{2} \)
$71$ \( ( 1 - T + 381 T^{2} - 417 T^{3} + 66850 T^{4} - 68550 T^{5} + 7142942 T^{6} - 6246700 T^{7} + 507148882 T^{8} - 345560550 T^{9} + 23926350350 T^{10} - 10596670977 T^{11} + 687411382731 T^{12} - 128100283921 T^{13} + 9095120158391 T^{14} )^{2} \)
$73$ \( 1 - 21 T - 107 T^{2} + 4532 T^{3} + 8593 T^{4} - 574123 T^{5} - 1508435 T^{6} + 52395764 T^{7} + 342478696 T^{8} - 4227610868 T^{9} - 46283154524 T^{10} + 253115011813 T^{11} + 4673586532751 T^{12} - 7744045394141 T^{13} - 369527474872486 T^{14} - 565315313772293 T^{15} + 24905542633030079 T^{16} + 98466042550457821 T^{17} - 1314360176412792284 T^{18} - 8764139996708872724 T^{19} + 51828748479625639144 T^{20} + \)\(57\!\cdots\!08\)\( T^{21} - \)\(12\!\cdots\!35\)\( T^{22} - \)\(33\!\cdots\!99\)\( T^{23} + \)\(36\!\cdots\!57\)\( T^{24} + \)\(14\!\cdots\!64\)\( T^{25} - \)\(24\!\cdots\!47\)\( T^{26} - \)\(35\!\cdots\!93\)\( T^{27} + \)\(12\!\cdots\!09\)\( T^{28} \)
$79$ \( ( 1 + 10 T + 326 T^{2} + 3770 T^{3} + 58966 T^{4} + 604927 T^{5} + 7130289 T^{6} + 58615338 T^{7} + 563292831 T^{8} + 3775349407 T^{9} + 29072537674 T^{10} + 146841805370 T^{11} + 1003120386074 T^{12} + 2430874555210 T^{13} + 19203908986159 T^{14} )^{2} \)
$83$ \( 1 + 25 T + 157 T^{2} - 750 T^{3} - 6622 T^{4} + 69964 T^{5} + 1466905 T^{6} + 20424981 T^{7} + 74872112 T^{8} - 997051343 T^{9} + 7203133487 T^{10} + 269189728764 T^{11} + 1307717205141 T^{12} - 2467734607815 T^{13} - 39825488981322 T^{14} - 204821972448645 T^{15} + 9008863826216349 T^{16} + 153919187440781268 T^{17} + 341848621231895327 T^{18} - 3927425763234733549 T^{19} + 24478716252205585328 T^{20} + \)\(55\!\cdots\!87\)\( T^{21} + \)\(33\!\cdots\!05\)\( T^{22} + \)\(13\!\cdots\!92\)\( T^{23} - \)\(10\!\cdots\!78\)\( T^{24} - \)\(96\!\cdots\!50\)\( T^{25} + \)\(16\!\cdots\!77\)\( T^{26} + \)\(22\!\cdots\!75\)\( T^{27} + \)\(73\!\cdots\!29\)\( T^{28} \)
$89$ \( 1 - 6 T - 395 T^{2} + 1770 T^{3} + 83413 T^{4} - 244017 T^{5} - 12791578 T^{6} + 19742595 T^{7} + 1607888462 T^{8} - 933579267 T^{9} - 173735706451 T^{10} + 11863751967 T^{11} + 16888438123377 T^{12} + 583089996186 T^{13} - 1538438146646466 T^{14} + 51895009660554 T^{15} + 133773318375269217 T^{16} + 8363577360424023 T^{17} - 10900567564453896691 T^{18} - 5213162127281843883 T^{19} + \)\(79\!\cdots\!82\)\( T^{20} + \)\(87\!\cdots\!55\)\( T^{21} - \)\(50\!\cdots\!18\)\( T^{22} - \)\(85\!\cdots\!53\)\( T^{23} + \)\(26\!\cdots\!13\)\( T^{24} + \)\(49\!\cdots\!30\)\( T^{25} - \)\(97\!\cdots\!95\)\( T^{26} - \)\(13\!\cdots\!14\)\( T^{27} + \)\(19\!\cdots\!41\)\( T^{28} \)
$97$ \( 1 + 18 T - 332 T^{2} - 7282 T^{3} + 70792 T^{4} + 1694642 T^{5} - 11251793 T^{6} - 262778647 T^{7} + 1667779429 T^{8} + 30411590872 T^{9} - 218639545013 T^{10} - 2436064838528 T^{11} + 25890765026051 T^{12} + 94489464293929 T^{13} - 2645836565169718 T^{14} + 9165478036511113 T^{15} + 243606208130113859 T^{16} - 2223330604373865344 T^{17} - 19356001718168025653 T^{18} + \)\(26\!\cdots\!04\)\( T^{19} + \)\(13\!\cdots\!41\)\( T^{20} - \)\(21\!\cdots\!11\)\( T^{21} - \)\(88\!\cdots\!73\)\( T^{22} + \)\(12\!\cdots\!14\)\( T^{23} + \)\(52\!\cdots\!08\)\( T^{24} - \)\(52\!\cdots\!46\)\( T^{25} - \)\(23\!\cdots\!12\)\( T^{26} + \)\(12\!\cdots\!86\)\( T^{27} + \)\(65\!\cdots\!69\)\( T^{28} \)
show more
show less