Properties

Label 3024.2.q.g.2881.3
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Defining polynomial: \(x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.g.2305.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.794182 - 1.37556i) q^{5} +(-1.23855 - 2.33795i) q^{7} +O(q^{10})\) \(q+(0.794182 - 1.37556i) q^{5} +(-1.23855 - 2.33795i) q^{7} +(0.794182 + 1.37556i) q^{11} +(2.40545 + 4.16635i) q^{13} +(2.69963 - 4.67589i) q^{17} +(3.54944 + 6.14781i) q^{19} +(-0.150186 + 0.260130i) q^{23} +(1.23855 + 2.14523i) q^{25} +(-4.13781 + 7.16689i) q^{29} +2.71201 q^{31} +(-4.19963 - 0.153051i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-2.93818 - 5.08907i) q^{41} +(0.833104 - 1.44298i) q^{43} +2.66621 q^{47} +(-3.93199 + 5.79133i) q^{49} +(-2.44437 + 4.23377i) q^{53} +2.52290 q^{55} +6.47710 q^{59} -4.47710 q^{61} +7.64145 q^{65} +10.0531 q^{67} +12.7207 q^{71} +(8.02654 - 13.9024i) q^{73} +(2.23236 - 3.56046i) q^{77} -8.38688 q^{79} +(1.18292 - 2.04887i) q^{83} +(-4.28799 - 7.42702i) q^{85} +(-1.60507 - 2.78007i) q^{89} +(6.76145 - 10.7840i) q^{91} +11.2756 q^{95} +(0.712008 - 1.23323i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - q^{5} - 2q^{7} + O(q^{10}) \) \( 6q - q^{5} - 2q^{7} - q^{11} + 8q^{13} + 4q^{17} + 3q^{19} - 7q^{23} + 2q^{25} + 5q^{29} + 40q^{31} - 13q^{35} + 3q^{37} + 6q^{43} + 18q^{47} + 12q^{49} - 15q^{53} + 26q^{55} + 28q^{59} - 16q^{61} - 24q^{65} + 2q^{67} + 14q^{71} + 19q^{73} - 10q^{77} + 10q^{79} + 2q^{83} - 2q^{85} + 9q^{89} + 46q^{91} + 8q^{95} + 28q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.794182 1.37556i 0.355169 0.615171i −0.631978 0.774986i \(-0.717757\pi\)
0.987147 + 0.159816i \(0.0510900\pi\)
\(6\) 0 0
\(7\) −1.23855 2.33795i −0.468128 0.883661i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.794182 + 1.37556i 0.239455 + 0.414748i 0.960558 0.278080i \(-0.0896979\pi\)
−0.721103 + 0.692828i \(0.756365\pi\)
\(12\) 0 0
\(13\) 2.40545 + 4.16635i 0.667151 + 1.15554i 0.978697 + 0.205308i \(0.0658196\pi\)
−0.311547 + 0.950231i \(0.600847\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.69963 4.67589i 0.654756 1.13407i −0.327199 0.944955i \(-0.606105\pi\)
0.981955 0.189115i \(-0.0605620\pi\)
\(18\) 0 0
\(19\) 3.54944 + 6.14781i 0.814298 + 1.41041i 0.909831 + 0.414979i \(0.136211\pi\)
−0.0955331 + 0.995426i \(0.530456\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.150186 + 0.260130i −0.0313159 + 0.0542408i −0.881259 0.472634i \(-0.843303\pi\)
0.849943 + 0.526875i \(0.176636\pi\)
\(24\) 0 0
\(25\) 1.23855 + 2.14523i 0.247710 + 0.429046i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.13781 + 7.16689i −0.768371 + 1.33086i 0.170074 + 0.985431i \(0.445599\pi\)
−0.938446 + 0.345427i \(0.887734\pi\)
\(30\) 0 0
\(31\) 2.71201 0.487091 0.243545 0.969889i \(-0.421689\pi\)
0.243545 + 0.969889i \(0.421689\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.19963 0.153051i −0.709867 0.0258703i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.93818 5.08907i −0.458866 0.794780i 0.540035 0.841643i \(-0.318411\pi\)
−0.998901 + 0.0468628i \(0.985078\pi\)
\(42\) 0 0
\(43\) 0.833104 1.44298i 0.127047 0.220052i −0.795484 0.605974i \(-0.792783\pi\)
0.922531 + 0.385922i \(0.126117\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.66621 0.388906 0.194453 0.980912i \(-0.437707\pi\)
0.194453 + 0.980912i \(0.437707\pi\)
\(48\) 0 0
\(49\) −3.93199 + 5.79133i −0.561713 + 0.827332i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.44437 + 4.23377i −0.335760 + 0.581553i −0.983630 0.180197i \(-0.942326\pi\)
0.647871 + 0.761750i \(0.275660\pi\)
\(54\) 0 0
\(55\) 2.52290 0.340188
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.47710 0.843247 0.421623 0.906771i \(-0.361460\pi\)
0.421623 + 0.906771i \(0.361460\pi\)
\(60\) 0 0
\(61\) −4.47710 −0.573234 −0.286617 0.958045i \(-0.592531\pi\)
−0.286617 + 0.958045i \(0.592531\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.64145 0.947805
\(66\) 0 0
\(67\) 10.0531 1.22818 0.614090 0.789236i \(-0.289523\pi\)
0.614090 + 0.789236i \(0.289523\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7207 1.50967 0.754833 0.655917i \(-0.227718\pi\)
0.754833 + 0.655917i \(0.227718\pi\)
\(72\) 0 0
\(73\) 8.02654 13.9024i 0.939436 1.62715i 0.172909 0.984938i \(-0.444683\pi\)
0.766527 0.642213i \(-0.221983\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.23236 3.56046i 0.254401 0.405752i
\(78\) 0 0
\(79\) −8.38688 −0.943597 −0.471799 0.881706i \(-0.656395\pi\)
−0.471799 + 0.881706i \(0.656395\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.18292 2.04887i 0.129842 0.224893i −0.793773 0.608214i \(-0.791886\pi\)
0.923615 + 0.383321i \(0.125220\pi\)
\(84\) 0 0
\(85\) −4.28799 7.42702i −0.465098 0.805573i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.60507 2.78007i −0.170138 0.294687i 0.768330 0.640054i \(-0.221088\pi\)
−0.938468 + 0.345367i \(0.887755\pi\)
\(90\) 0 0
\(91\) 6.76145 10.7840i 0.708793 1.13047i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.2756 1.15685
\(96\) 0 0
\(97\) 0.712008 1.23323i 0.0722934 0.125216i −0.827613 0.561300i \(-0.810302\pi\)
0.899906 + 0.436084i \(0.143635\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.01671 + 10.4212i 0.598685 + 1.03695i 0.993015 + 0.117984i \(0.0376432\pi\)
−0.394330 + 0.918969i \(0.629023\pi\)
\(102\) 0 0
\(103\) −3.04944 + 5.28179i −0.300470 + 0.520430i −0.976243 0.216680i \(-0.930477\pi\)
0.675772 + 0.737111i \(0.263810\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.54325 2.67299i −0.149192 0.258408i 0.781737 0.623608i \(-0.214334\pi\)
−0.930929 + 0.365200i \(0.881001\pi\)
\(108\) 0 0
\(109\) 1.14400 1.98146i 0.109575 0.189789i −0.806023 0.591884i \(-0.798384\pi\)
0.915598 + 0.402095i \(0.131718\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.73236 + 16.8569i 0.915543 + 1.58577i 0.806104 + 0.591774i \(0.201572\pi\)
0.109440 + 0.993993i \(0.465094\pi\)
\(114\) 0 0
\(115\) 0.238550 + 0.413181i 0.0222449 + 0.0385293i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.2756 0.520259i −1.30864 0.0476921i
\(120\) 0 0
\(121\) 4.23855 7.34138i 0.385323 0.667399i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8764 1.06225
\(126\) 0 0
\(127\) 13.4400 1.19260 0.596302 0.802760i \(-0.296636\pi\)
0.596302 + 0.802760i \(0.296636\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.58836 2.75113i 0.138776 0.240367i −0.788258 0.615345i \(-0.789017\pi\)
0.927034 + 0.374978i \(0.122350\pi\)
\(132\) 0 0
\(133\) 9.97710 15.9128i 0.865124 1.37981i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.6316 18.4145i −0.908320 1.57326i −0.816397 0.577491i \(-0.804032\pi\)
−0.0919231 0.995766i \(-0.529301\pi\)
\(138\) 0 0
\(139\) −6.52654 11.3043i −0.553574 0.958818i −0.998013 0.0630092i \(-0.979930\pi\)
0.444439 0.895809i \(-0.353403\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.82072 + 6.61769i −0.319505 + 0.553399i
\(144\) 0 0
\(145\) 6.57234 + 11.3836i 0.545803 + 0.945359i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.60439 4.51093i 0.213360 0.369550i −0.739404 0.673262i \(-0.764893\pi\)
0.952764 + 0.303712i \(0.0982261\pi\)
\(150\) 0 0
\(151\) −0.261450 0.452845i −0.0212765 0.0368520i 0.855191 0.518313i \(-0.173440\pi\)
−0.876468 + 0.481461i \(0.840106\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.15383 3.73054i 0.173000 0.299644i
\(156\) 0 0
\(157\) 8.86398 0.707422 0.353711 0.935355i \(-0.384920\pi\)
0.353711 + 0.935355i \(0.384920\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.794182 + 0.0289431i 0.0625903 + 0.00228104i
\(162\) 0 0
\(163\) −10.9814 19.0204i −0.860132 1.48979i −0.871801 0.489860i \(-0.837048\pi\)
0.0116689 0.999932i \(-0.496286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.65019 + 2.85821i 0.127695 + 0.221175i 0.922783 0.385319i \(-0.125909\pi\)
−0.795088 + 0.606494i \(0.792575\pi\)
\(168\) 0 0
\(169\) −5.07234 + 8.78555i −0.390180 + 0.675812i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.1075 −1.45272 −0.726360 0.687315i \(-0.758789\pi\)
−0.726360 + 0.687315i \(0.758789\pi\)
\(174\) 0 0
\(175\) 3.48143 5.55264i 0.263171 0.419740i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.03706 + 13.9206i −0.600718 + 1.04047i 0.391994 + 0.919968i \(0.371785\pi\)
−0.992712 + 0.120507i \(0.961548\pi\)
\(180\) 0 0
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.58836 0.116779
\(186\) 0 0
\(187\) 8.57598 0.627138
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −23.9629 −1.73389 −0.866946 0.498402i \(-0.833920\pi\)
−0.866946 + 0.498402i \(0.833920\pi\)
\(192\) 0 0
\(193\) 9.76509 0.702907 0.351453 0.936205i \(-0.385688\pi\)
0.351453 + 0.936205i \(0.385688\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.2436 1.29980 0.649900 0.760020i \(-0.274811\pi\)
0.649900 + 0.760020i \(0.274811\pi\)
\(198\) 0 0
\(199\) −9.04944 + 15.6741i −0.641498 + 1.11111i 0.343601 + 0.939116i \(0.388353\pi\)
−0.985098 + 0.171991i \(0.944980\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 21.8807 + 0.797418i 1.53572 + 0.0559678i
\(204\) 0 0
\(205\) −9.33379 −0.651900
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.63781 + 9.76497i −0.389975 + 0.675457i
\(210\) 0 0
\(211\) −0.166208 0.287880i −0.0114422 0.0198185i 0.860248 0.509877i \(-0.170309\pi\)
−0.871690 + 0.490058i \(0.836976\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.32327 2.29197i −0.0902464 0.156311i
\(216\) 0 0
\(217\) −3.35896 6.34053i −0.228021 0.430423i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 25.9752 1.74728
\(222\) 0 0
\(223\) −3.16621 + 5.48403i −0.212025 + 0.367238i −0.952348 0.305013i \(-0.901339\pi\)
0.740323 + 0.672251i \(0.234672\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.6545 + 20.1862i 0.773537 + 1.33981i 0.935613 + 0.353028i \(0.114848\pi\)
−0.162075 + 0.986778i \(0.551819\pi\)
\(228\) 0 0
\(229\) 2.47710 4.29046i 0.163691 0.283522i −0.772498 0.635017i \(-0.780993\pi\)
0.936190 + 0.351495i \(0.114327\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.13781 + 12.3630i 0.467613 + 0.809930i 0.999315 0.0370017i \(-0.0117807\pi\)
−0.531702 + 0.846932i \(0.678447\pi\)
\(234\) 0 0
\(235\) 2.11745 3.66754i 0.138127 0.239244i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.48762 + 4.30868i 0.160911 + 0.278706i 0.935196 0.354132i \(-0.115224\pi\)
−0.774285 + 0.632837i \(0.781890\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.84362 + 10.0081i 0.309448 + 0.639392i
\(246\) 0 0
\(247\) −17.0760 + 29.5765i −1.08652 + 1.88191i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) 0 0
\(253\) −0.477100 −0.0299950
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.493810 + 0.855304i −0.0308030 + 0.0533524i −0.881016 0.473087i \(-0.843140\pi\)
0.850213 + 0.526439i \(0.176473\pi\)
\(258\) 0 0
\(259\) 1.40545 2.24159i 0.0873302 0.139286i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.59269 14.8830i −0.529848 0.917724i −0.999394 0.0348158i \(-0.988916\pi\)
0.469545 0.882908i \(-0.344418\pi\)
\(264\) 0 0
\(265\) 3.88255 + 6.72477i 0.238503 + 0.413099i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.4523 + 19.8360i −0.698262 + 1.20942i 0.270807 + 0.962634i \(0.412709\pi\)
−0.969069 + 0.246791i \(0.920624\pi\)
\(270\) 0 0
\(271\) −7.00364 12.1307i −0.425441 0.736885i 0.571021 0.820936i \(-0.306548\pi\)
−0.996462 + 0.0840504i \(0.973214\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.96727 + 3.40741i −0.118631 + 0.205474i
\(276\) 0 0
\(277\) −14.1476 24.5044i −0.850049 1.47233i −0.881163 0.472813i \(-0.843239\pi\)
0.0311139 0.999516i \(-0.490095\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.79782 15.2383i 0.524834 0.909039i −0.474748 0.880122i \(-0.657461\pi\)
0.999582 0.0289175i \(-0.00920600\pi\)
\(282\) 0 0
\(283\) 18.5229 1.10107 0.550536 0.834811i \(-0.314423\pi\)
0.550536 + 0.834811i \(0.314423\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.25890 + 13.1724i −0.487508 + 0.777541i
\(288\) 0 0
\(289\) −6.07598 10.5239i −0.357411 0.619054i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.04256 + 12.1981i 0.411431 + 0.712619i 0.995046 0.0994108i \(-0.0316958\pi\)
−0.583616 + 0.812030i \(0.698362\pi\)
\(294\) 0 0
\(295\) 5.14400 8.90966i 0.299495 0.518741i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.44506 −0.0835698
\(300\) 0 0
\(301\) −4.40545 0.160552i −0.253926 0.00925405i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.55563 + 6.15854i −0.203595 + 0.352637i
\(306\) 0 0
\(307\) 5.85532 0.334180 0.167090 0.985942i \(-0.446563\pi\)
0.167090 + 0.985942i \(0.446563\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.810892 0.0459815 0.0229907 0.999736i \(-0.492681\pi\)
0.0229907 + 0.999736i \(0.492681\pi\)
\(312\) 0 0
\(313\) 10.5760 0.597790 0.298895 0.954286i \(-0.403382\pi\)
0.298895 + 0.954286i \(0.403382\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.1964 −0.685018 −0.342509 0.939515i \(-0.611277\pi\)
−0.342509 + 0.939515i \(0.611277\pi\)
\(318\) 0 0
\(319\) −13.1447 −0.735961
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 38.3287 2.13267
\(324\) 0 0
\(325\) −5.95853 + 10.3205i −0.330520 + 0.572477i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.30223 6.23345i −0.182058 0.343661i
\(330\) 0 0
\(331\) 15.6662 0.861093 0.430546 0.902568i \(-0.358321\pi\)
0.430546 + 0.902568i \(0.358321\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.98398 13.8287i 0.436211 0.755540i
\(336\) 0 0
\(337\) −4.21201 7.29541i −0.229443 0.397406i 0.728200 0.685364i \(-0.240357\pi\)
−0.957643 + 0.287958i \(0.907024\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.15383 + 3.73054i 0.116636 + 0.202020i
\(342\) 0 0
\(343\) 18.4098 + 2.01993i 0.994035 + 0.109066i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.567323 0.0304555 0.0152277 0.999884i \(-0.495153\pi\)
0.0152277 + 0.999884i \(0.495153\pi\)
\(348\) 0 0
\(349\) −0.00364189 + 0.00630794i −0.000194946 + 0.000337656i −0.866123 0.499831i \(-0.833395\pi\)
0.865928 + 0.500169i \(0.166729\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.32691 + 5.76238i 0.177074 + 0.306701i 0.940877 0.338748i \(-0.110004\pi\)
−0.763803 + 0.645449i \(0.776670\pi\)
\(354\) 0 0
\(355\) 10.1025 17.4981i 0.536186 0.928702i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.398568 0.690339i −0.0210356 0.0364347i 0.855316 0.518107i \(-0.173363\pi\)
−0.876352 + 0.481672i \(0.840030\pi\)
\(360\) 0 0
\(361\) −15.6971 + 27.1881i −0.826162 + 1.43095i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.7491 22.0820i −0.667317 1.15583i
\(366\) 0 0
\(367\) −7.71634 13.3651i −0.402790 0.697652i 0.591272 0.806472i \(-0.298626\pi\)
−0.994061 + 0.108820i \(0.965293\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.9258 + 0.471067i 0.671074 + 0.0244566i
\(372\) 0 0
\(373\) −5.12110 + 8.87000i −0.265160 + 0.459271i −0.967606 0.252467i \(-0.918758\pi\)
0.702445 + 0.711738i \(0.252092\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −39.8131 −2.05048
\(378\) 0 0
\(379\) −25.0087 −1.28461 −0.642304 0.766450i \(-0.722021\pi\)
−0.642304 + 0.766450i \(0.722021\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.13348 5.42734i 0.160113 0.277324i −0.774796 0.632211i \(-0.782147\pi\)
0.934909 + 0.354887i \(0.115481\pi\)
\(384\) 0 0
\(385\) −3.12474 5.89841i −0.159251 0.300611i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.8171 18.7357i −0.548448 0.949940i −0.998381 0.0568774i \(-0.981886\pi\)
0.449933 0.893062i \(-0.351448\pi\)
\(390\) 0 0
\(391\) 0.810892 + 1.40451i 0.0410086 + 0.0710290i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.66071 + 11.5367i −0.335137 + 0.580473i
\(396\) 0 0
\(397\) 2.05308 + 3.55605i 0.103041 + 0.178473i 0.912936 0.408102i \(-0.133809\pi\)
−0.809895 + 0.586575i \(0.800476\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.37085 14.4987i 0.418021 0.724033i −0.577720 0.816235i \(-0.696057\pi\)
0.995740 + 0.0922024i \(0.0293907\pi\)
\(402\) 0 0
\(403\) 6.52359 + 11.2992i 0.324963 + 0.562853i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.794182 + 1.37556i −0.0393661 + 0.0681842i
\(408\) 0 0
\(409\) −8.76509 −0.433406 −0.216703 0.976238i \(-0.569530\pi\)
−0.216703 + 0.976238i \(0.569530\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.02221 15.1431i −0.394747 0.745144i
\(414\) 0 0
\(415\) −1.87890 3.25436i −0.0922318 0.159750i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.210149 0.363988i −0.0102664 0.0177820i 0.860847 0.508865i \(-0.169935\pi\)
−0.871113 + 0.491083i \(0.836601\pi\)
\(420\) 0 0
\(421\) 3.28799 5.69497i 0.160247 0.277556i −0.774710 0.632316i \(-0.782104\pi\)
0.934957 + 0.354761i \(0.115438\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.3745 0.648758
\(426\) 0 0
\(427\) 5.54511 + 10.4672i 0.268347 + 0.506544i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.0439 19.1287i 0.531968 0.921395i −0.467336 0.884080i \(-0.654786\pi\)
0.999304 0.0373155i \(-0.0118806\pi\)
\(432\) 0 0
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.13231 −0.102002
\(438\) 0 0
\(439\) 31.2064 1.48940 0.744701 0.667398i \(-0.232592\pi\)
0.744701 + 0.667398i \(0.232592\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.0545 0.620236 0.310118 0.950698i \(-0.399631\pi\)
0.310118 + 0.950698i \(0.399631\pi\)
\(444\) 0 0
\(445\) −5.09888 −0.241710
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.91706 0.468015 0.234008 0.972235i \(-0.424816\pi\)
0.234008 + 0.972235i \(0.424816\pi\)
\(450\) 0 0
\(451\) 4.66690 8.08330i 0.219756 0.380628i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.46431 17.8653i −0.443694 0.837538i
\(456\) 0 0
\(457\) −24.5229 −1.14713 −0.573566 0.819159i \(-0.694441\pi\)
−0.573566 + 0.819159i \(0.694441\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.75526 + 3.04020i −0.0817506 + 0.141596i −0.904002 0.427528i \(-0.859384\pi\)
0.822251 + 0.569125i \(0.192718\pi\)
\(462\) 0 0
\(463\) −8.69413 15.0587i −0.404050 0.699836i 0.590160 0.807286i \(-0.299065\pi\)
−0.994210 + 0.107451i \(0.965731\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.69894 + 11.6029i 0.309990 + 0.536918i 0.978360 0.206911i \(-0.0663410\pi\)
−0.668370 + 0.743829i \(0.733008\pi\)
\(468\) 0 0
\(469\) −12.4512 23.5036i −0.574945 1.08529i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.64654 0.121688
\(474\) 0 0
\(475\) −8.79232 + 15.2287i −0.403419 + 0.698743i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.4029 18.0183i −0.475321 0.823279i 0.524280 0.851546i \(-0.324335\pi\)
−0.999600 + 0.0282667i \(0.991001\pi\)
\(480\) 0 0
\(481\) −2.40545 + 4.16635i −0.109679 + 0.189969i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.13093 1.95882i −0.0513528 0.0889456i
\(486\) 0 0
\(487\) −16.2472 + 28.1410i −0.736231 + 1.27519i 0.217950 + 0.975960i \(0.430063\pi\)
−0.954181 + 0.299230i \(0.903270\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.66071 16.7328i −0.435982 0.755142i 0.561394 0.827549i \(-0.310265\pi\)
−0.997375 + 0.0724067i \(0.976932\pi\)
\(492\) 0 0
\(493\) 22.3411 + 38.6959i 1.00619 + 1.74277i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.7552 29.7402i −0.706717 1.33403i
\(498\) 0 0
\(499\) −5.57530 + 9.65670i −0.249585 + 0.432293i −0.963411 0.268030i \(-0.913627\pi\)
0.713826 + 0.700323i \(0.246961\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 0 0
\(505\) 19.1135 0.850537
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.722528 1.25146i 0.0320255 0.0554698i −0.849568 0.527478i \(-0.823138\pi\)
0.881594 + 0.472009i \(0.156471\pi\)
\(510\) 0 0
\(511\) −42.4443 1.54684i −1.87762 0.0684280i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.84362 + 8.38940i 0.213436 + 0.369681i
\(516\) 0 0
\(517\) 2.11745 + 3.66754i 0.0931255 + 0.161298i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.64214 + 16.7007i −0.422430 + 0.731670i −0.996177 0.0873630i \(-0.972156\pi\)
0.573747 + 0.819033i \(0.305489\pi\)
\(522\) 0 0
\(523\) 18.3454 + 31.7752i 0.802189 + 1.38943i 0.918173 + 0.396180i \(0.129665\pi\)
−0.115984 + 0.993251i \(0.537002\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.32141 12.6811i 0.318926 0.552396i
\(528\) 0 0
\(529\) 11.4549 + 19.8404i 0.498039 + 0.862628i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.1353 24.4830i 0.612266 1.06048i
\(534\) 0 0
\(535\) −4.90249 −0.211953
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.0891 0.809332i −0.477639 0.0348604i
\(540\) 0 0
\(541\) −1.62543 2.81532i −0.0698825 0.121040i 0.828967 0.559298i \(-0.188929\pi\)
−0.898849 + 0.438258i \(0.855596\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.81708 3.14728i −0.0778352 0.134815i
\(546\) 0 0
\(547\) 2.95853 5.12432i 0.126498 0.219100i −0.795820 0.605534i \(-0.792960\pi\)
0.922317 + 0.386433i \(0.126293\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −58.7476 −2.50273
\(552\) 0 0
\(553\) 10.3876 + 19.6081i 0.441724 + 0.833820i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.8040 + 22.1772i −0.542523 + 0.939678i 0.456235 + 0.889859i \(0.349198\pi\)
−0.998758 + 0.0498188i \(0.984136\pi\)
\(558\) 0 0
\(559\) 8.01594 0.339038
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −46.6377 −1.96555 −0.982773 0.184817i \(-0.940831\pi\)
−0.982773 + 0.184817i \(0.940831\pi\)
\(564\) 0 0
\(565\) 30.9171 1.30069
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −31.1978 −1.30788 −0.653939 0.756547i \(-0.726885\pi\)
−0.653939 + 0.756547i \(0.726885\pi\)
\(570\) 0 0
\(571\) 15.6762 0.656030 0.328015 0.944672i \(-0.393620\pi\)
0.328015 + 0.944672i \(0.393620\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.744051 −0.0310291
\(576\) 0 0
\(577\) 6.99567 12.1169i 0.291234 0.504431i −0.682868 0.730542i \(-0.739268\pi\)
0.974102 + 0.226110i \(0.0726010\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.25526 0.227966i −0.259512 0.00945763i
\(582\) 0 0
\(583\) −7.76509 −0.321597
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.44801 2.50803i 0.0597658 0.103517i −0.834594 0.550865i \(-0.814298\pi\)
0.894360 + 0.447348i \(0.147631\pi\)
\(588\) 0 0
\(589\) 9.62612 + 16.6729i 0.396637 + 0.686996i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.04394 + 3.54021i 0.0839346 + 0.145379i 0.904937 0.425546i \(-0.139918\pi\)
−0.821002 + 0.570925i \(0.806585\pi\)
\(594\) 0 0
\(595\) −12.0531 + 19.2238i −0.494128 + 0.788100i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.7651 −0.807580 −0.403790 0.914852i \(-0.632307\pi\)
−0.403790 + 0.914852i \(0.632307\pi\)
\(600\) 0 0
\(601\) −13.4320 + 23.2649i −0.547902 + 0.948994i 0.450516 + 0.892768i \(0.351240\pi\)
−0.998418 + 0.0562261i \(0.982093\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.73236 11.6608i −0.273709 0.474079i
\(606\) 0 0
\(607\) −7.62110 + 13.2001i −0.309331 + 0.535777i −0.978216 0.207589i \(-0.933438\pi\)
0.668885 + 0.743366i \(0.266772\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.41342 + 11.1084i 0.259459 + 0.449396i
\(612\) 0 0
\(613\) −1.36033 + 2.35617i −0.0549434 + 0.0951648i −0.892189 0.451662i \(-0.850831\pi\)
0.837246 + 0.546827i \(0.184165\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.21812 + 15.9663i 0.371108 + 0.642777i 0.989736 0.142906i \(-0.0456448\pi\)
−0.618629 + 0.785684i \(0.712311\pi\)
\(618\) 0 0
\(619\) 0.0537728 + 0.0931373i 0.00216131 + 0.00374350i 0.867104 0.498127i \(-0.165979\pi\)
−0.864943 + 0.501871i \(0.832645\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.51169 + 7.19583i −0.180757 + 0.288295i
\(624\) 0 0
\(625\) 3.23924 5.61053i 0.129570 0.224421i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.39926 0.215282
\(630\) 0 0
\(631\) −35.7266 −1.42225 −0.711126 0.703064i \(-0.751815\pi\)
−0.711126 + 0.703064i \(0.751815\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.6738 18.4875i 0.423576 0.733655i
\(636\) 0 0
\(637\) −33.5869 2.45133i −1.33076 0.0971254i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.65638 + 14.9933i 0.341906 + 0.592199i 0.984787 0.173767i \(-0.0555941\pi\)
−0.642880 + 0.765967i \(0.722261\pi\)
\(642\) 0 0
\(643\) −14.4821 25.0838i −0.571119 0.989207i −0.996451 0.0841700i \(-0.973176\pi\)
0.425332 0.905037i \(-0.360157\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.27816 2.21384i 0.0502497 0.0870350i −0.839807 0.542886i \(-0.817332\pi\)
0.890056 + 0.455851i \(0.150665\pi\)
\(648\) 0 0
\(649\) 5.14400 + 8.90966i 0.201920 + 0.349735i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.9883 25.9605i 0.586538 1.01591i −0.408144 0.912918i \(-0.633824\pi\)
0.994682 0.102996i \(-0.0328428\pi\)
\(654\) 0 0
\(655\) −2.52290 4.36979i −0.0985779 0.170742i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7.63162 + 13.2183i −0.297286 + 0.514914i −0.975514 0.219937i \(-0.929415\pi\)
0.678228 + 0.734851i \(0.262748\pi\)
\(660\) 0 0
\(661\) −27.2522 −1.05999 −0.529994 0.848001i \(-0.677806\pi\)
−0.529994 + 0.848001i \(0.677806\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −13.9654 26.3618i −0.541555 1.02227i
\(666\) 0 0
\(667\) −1.24288 2.15273i −0.0481245 0.0833541i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.55563 6.15854i −0.137264 0.237748i
\(672\) 0 0
\(673\) 23.2280 40.2320i 0.895372 1.55083i 0.0620280 0.998074i \(-0.480243\pi\)
0.833344 0.552755i \(-0.186423\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.09888 −0.195966 −0.0979830 0.995188i \(-0.531239\pi\)
−0.0979830 + 0.995188i \(0.531239\pi\)
\(678\) 0 0
\(679\) −3.76509 0.137215i −0.144491 0.00526582i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.77197 + 13.4614i −0.297386 + 0.515088i −0.975537 0.219835i \(-0.929448\pi\)
0.678151 + 0.734923i \(0.262782\pi\)
\(684\) 0 0
\(685\) −33.7738 −1.29043
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23.5192 −0.896009
\(690\) 0 0
\(691\) −23.2967 −0.886246 −0.443123 0.896461i \(-0.646130\pi\)
−0.443123 + 0.896461i \(0.646130\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.7330 −0.786449
\(696\) 0 0
\(697\) −31.7280 −1.20178
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 45.6464 1.72404 0.862020 0.506874i \(-0.169199\pi\)
0.862020 + 0.506874i \(0.169199\pi\)
\(702\) 0 0
\(703\) −3.54944 + 6.14781i −0.133870 + 0.231869i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.9123 26.9740i 0.636053 1.01446i
\(708\) 0 0
\(709\) 18.0014 0.676056 0.338028 0.941136i \(-0.390240\pi\)
0.338028 + 0.941136i \(0.390240\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.407305 + 0.705474i −0.0152537 + 0.0264202i
\(714\) 0 0
\(715\) 6.06870 + 10.5113i 0.226957 + 0.393100i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.4389 + 31.9371i 0.687654 + 1.19105i 0.972595 + 0.232506i \(0.0746926\pi\)
−0.284941 + 0.958545i \(0.591974\pi\)
\(720\) 0 0
\(721\) 16.1254 + 0.587674i 0.600542 + 0.0218861i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −20.4995 −0.761333
\(726\) 0 0
\(727\) −15.2429 + 26.4014i −0.565327 + 0.979175i 0.431692 + 0.902021i \(0.357917\pi\)
−0.997019 + 0.0771543i \(0.975417\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.49814 7.79101i −0.166370 0.288161i
\(732\) 0 0
\(733\) −3.07530 + 5.32657i −0.113589 + 0.196741i −0.917215 0.398393i \(-0.869568\pi\)
0.803626 + 0.595135i \(0.202901\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.98398 + 13.8287i 0.294094 + 0.509385i
\(738\) 0 0
\(739\) 20.3912 35.3186i 0.750103 1.29922i −0.197670 0.980269i \(-0.563337\pi\)
0.947772 0.318947i \(-0.103329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.25271 + 12.5621i 0.266076 + 0.460858i 0.967845 0.251547i \(-0.0809394\pi\)
−0.701769 + 0.712405i \(0.747606\pi\)
\(744\) 0 0
\(745\) −4.13671 7.16500i −0.151557 0.262505i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.33792 + 6.91867i −0.158504 + 0.252803i
\(750\) 0 0
\(751\) 2.09455 3.62787i 0.0764314 0.132383i −0.825276 0.564729i \(-0.808981\pi\)
0.901708 + 0.432346i \(0.142314\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.830556 −0.0302270
\(756\) 0 0
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.81708 3.14728i 0.0658692 0.114089i −0.831210 0.555959i \(-0.812351\pi\)
0.897079 + 0.441870i \(0.145685\pi\)
\(762\) 0 0
\(763\) −6.04944 0.220465i −0.219005 0.00798138i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.5803 + 26.9859i 0.562573 + 0.974404i
\(768\) 0 0
\(769\) −19.9672 34.5842i −0.720035 1.24714i −0.960985 0.276600i \(-0.910792\pi\)
0.240950 0.970538i \(-0.422541\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.0698 + 31.2978i −0.649925 + 1.12570i 0.333215 + 0.942851i \(0.391867\pi\)
−0.983140 + 0.182853i \(0.941467\pi\)
\(774\) 0 0
\(775\) 3.35896 + 5.81788i 0.120657 + 0.208985i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.8578 36.1267i 0.747308 1.29438i
\(780\) 0 0
\(781\) 10.1025 + 17.4981i 0.361497 + 0.626131i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.03961 12.1930i 0.251254 0.435186i
\(786\) 0 0
\(787\) 44.6377 1.59116 0.795582 0.605846i \(-0.207165\pi\)
0.795582 + 0.605846i \(0.207165\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27.3566 43.6319i 0.972689 1.55137i
\(792\) 0 0
\(793\) −10.7694 18.6532i −0.382433 0.662394i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.2836 45.5245i −0.931012 1.61256i −0.781595 0.623786i \(-0.785593\pi\)
−0.149418 0.988774i \(-0.547740\pi\)
\(798\) 0 0
\(799\) 7.19777 12.4669i 0.254639 0.441047i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 25.4981 0.899810
\(804\) 0 0
\(805\) 0.670538 1.06946i 0.0236334 0.0376936i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0