Properties

Label 3024.2.q.f.2881.1
Level 3024
Weight 2
Character 3024.2881
Analytic conductor 24.147
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.f.2305.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{5} +(2.00000 + 1.73205i) q^{7} +O(q^{10})\) \(q+(1.50000 - 2.59808i) q^{5} +(2.00000 + 1.73205i) q^{7} +(1.50000 + 2.59808i) q^{11} +(0.500000 + 0.866025i) q^{13} +(1.50000 - 2.59808i) q^{17} +(-3.50000 - 6.06218i) q^{19} +(4.50000 - 7.79423i) q^{23} +(-2.00000 - 3.46410i) q^{25} +(1.50000 - 2.59808i) q^{29} -8.00000 q^{31} +(7.50000 - 2.59808i) q^{35} +(0.500000 + 0.866025i) q^{37} +(1.50000 + 2.59808i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(1.00000 + 6.92820i) q^{49} +(1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +2.00000 q^{61} +3.00000 q^{65} +4.00000 q^{67} +12.0000 q^{71} +(-5.50000 + 9.52628i) q^{73} +(-1.50000 + 7.79423i) q^{77} +16.0000 q^{79} +(4.50000 - 7.79423i) q^{83} +(-4.50000 - 7.79423i) q^{85} +(1.50000 + 2.59808i) q^{89} +(-0.500000 + 2.59808i) q^{91} -21.0000 q^{95} +(0.500000 - 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{5} + 4q^{7} + O(q^{10}) \) \( 2q + 3q^{5} + 4q^{7} + 3q^{11} + q^{13} + 3q^{17} - 7q^{19} + 9q^{23} - 4q^{25} + 3q^{29} - 16q^{31} + 15q^{35} + q^{37} + 3q^{41} - q^{43} + 2q^{49} + 3q^{53} + 18q^{55} + 4q^{61} + 6q^{65} + 8q^{67} + 24q^{71} - 11q^{73} - 3q^{77} + 32q^{79} + 9q^{83} - 9q^{85} + 3q^{89} - q^{91} - 42q^{95} + q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.50000 7.79423i 0.938315 1.62521i 0.169701 0.985496i \(-0.445720\pi\)
0.768613 0.639713i \(-0.220947\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.50000 2.59808i 1.26773 0.439155i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) −0.500000 + 0.866025i −0.0762493 + 0.132068i −0.901629 0.432511i \(-0.857628\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i \(-0.767275\pi\)
0.950464 + 0.310835i \(0.100609\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −5.50000 + 9.52628i −0.643726 + 1.11497i 0.340868 + 0.940111i \(0.389279\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.50000 + 7.79423i −0.170941 + 0.888235i
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.50000 7.79423i 0.493939 0.855528i −0.506036 0.862512i \(-0.668890\pi\)
0.999976 + 0.00698436i \(0.00222321\pi\)
\(84\) 0 0
\(85\) −4.50000 7.79423i −0.488094 0.845403i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.50000 + 2.59808i 0.159000 + 0.275396i 0.934508 0.355942i \(-0.115840\pi\)
−0.775509 + 0.631337i \(0.782506\pi\)
\(90\) 0 0
\(91\) −0.500000 + 2.59808i −0.0524142 + 0.272352i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −21.0000 −2.15455
\(96\) 0 0
\(97\) 0.500000 0.866025i 0.0507673 0.0879316i −0.839525 0.543321i \(-0.817167\pi\)
0.890292 + 0.455389i \(0.150500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 + 2.59808i 0.149256 + 0.258518i 0.930953 0.365140i \(-0.118979\pi\)
−0.781697 + 0.623658i \(0.785646\pi\)
\(102\) 0 0
\(103\) −6.50000 + 11.2583i −0.640464 + 1.10932i 0.344865 + 0.938652i \(0.387925\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.50000 7.79423i −0.435031 0.753497i 0.562267 0.826956i \(-0.309929\pi\)
−0.997298 + 0.0734594i \(0.976596\pi\)
\(108\) 0 0
\(109\) 6.50000 11.2583i 0.622587 1.07835i −0.366415 0.930451i \(-0.619415\pi\)
0.989002 0.147901i \(-0.0472517\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.50000 7.79423i −0.423324 0.733219i 0.572938 0.819599i \(-0.305804\pi\)
−0.996262 + 0.0863794i \(0.972470\pi\)
\(114\) 0 0
\(115\) −13.5000 23.3827i −1.25888 2.18045i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.50000 2.59808i 0.687524 0.238165i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.50000 + 12.9904i −0.655278 + 1.13497i 0.326546 + 0.945181i \(0.394115\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(132\) 0 0
\(133\) 3.50000 18.1865i 0.303488 1.57697i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.50000 7.79423i −0.384461 0.665906i 0.607233 0.794524i \(-0.292279\pi\)
−0.991694 + 0.128618i \(0.958946\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.50000 + 2.59808i −0.125436 + 0.217262i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.50000 + 7.79423i −0.368654 + 0.638528i −0.989355 0.145519i \(-0.953515\pi\)
0.620701 + 0.784047i \(0.286848\pi\)
\(150\) 0 0
\(151\) −3.50000 6.06218i −0.284826 0.493333i 0.687741 0.725956i \(-0.258602\pi\)
−0.972567 + 0.232623i \(0.925269\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 + 20.7846i −0.963863 + 1.66946i
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.5000 7.79423i 1.77325 0.614271i
\(162\) 0 0
\(163\) −9.50000 16.4545i −0.744097 1.28881i −0.950615 0.310372i \(-0.899546\pi\)
0.206518 0.978443i \(-0.433787\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.50000 + 12.9904i 0.580367 + 1.00523i 0.995436 + 0.0954356i \(0.0304244\pi\)
−0.415068 + 0.909790i \(0.636242\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 2.00000 10.3923i 0.151186 0.785584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.5000 18.1865i 0.784807 1.35933i −0.144308 0.989533i \(-0.546095\pi\)
0.929114 0.369792i \(-0.120571\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −12.5000 + 21.6506i −0.886102 + 1.53477i −0.0416556 + 0.999132i \(0.513263\pi\)
−0.844446 + 0.535641i \(0.820070\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.50000 2.59808i 0.526397 0.182349i
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.5000 18.1865i 0.726300 1.25799i
\(210\) 0 0
\(211\) 2.50000 + 4.33013i 0.172107 + 0.298098i 0.939156 0.343490i \(-0.111609\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.50000 + 2.59808i 0.102299 + 0.177187i
\(216\) 0 0
\(217\) −16.0000 13.8564i −1.08615 0.940634i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) −0.500000 + 0.866025i −0.0334825 + 0.0579934i −0.882281 0.470723i \(-0.843993\pi\)
0.848799 + 0.528716i \(0.177326\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 0 0
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.50000 + 2.59808i 0.0982683 + 0.170206i 0.910968 0.412477i \(-0.135336\pi\)
−0.812700 + 0.582683i \(0.802003\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.50000 + 2.59808i 0.0970269 + 0.168056i 0.910453 0.413613i \(-0.135733\pi\)
−0.813426 + 0.581669i \(0.802400\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 19.5000 + 7.79423i 1.24581 + 0.497955i
\(246\) 0 0
\(247\) 3.50000 6.06218i 0.222700 0.385727i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.5000 + 18.1865i −0.654972 + 1.13444i 0.326929 + 0.945049i \(0.393986\pi\)
−0.981901 + 0.189396i \(0.939347\pi\)
\(258\) 0 0
\(259\) −0.500000 + 2.59808i −0.0310685 + 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.50000 7.79423i −0.277482 0.480613i 0.693276 0.720672i \(-0.256167\pi\)
−0.970758 + 0.240059i \(0.922833\pi\)
\(264\) 0 0
\(265\) −4.50000 7.79423i −0.276433 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.50000 12.9904i 0.457283 0.792038i −0.541533 0.840679i \(-0.682156\pi\)
0.998816 + 0.0486418i \(0.0154893\pi\)
\(270\) 0 0
\(271\) 2.50000 + 4.33013i 0.151864 + 0.263036i 0.931913 0.362682i \(-0.118139\pi\)
−0.780049 + 0.625719i \(0.784806\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5000 + 18.1865i −0.626377 + 1.08492i 0.361895 + 0.932219i \(0.382130\pi\)
−0.988273 + 0.152699i \(0.951204\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.50000 + 7.79423i −0.0885422 + 0.460079i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.00000 0.520483
\(300\) 0 0
\(301\) −2.50000 + 0.866025i −0.144098 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 5.19615i 0.171780 0.297531i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −21.0000 −1.16847
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.00000 10.3923i 0.327815 0.567792i
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 20.7846i −0.649836 1.12555i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −11.5000 + 19.9186i −0.615581 + 1.06622i 0.374701 + 0.927146i \(0.377745\pi\)
−0.990282 + 0.139072i \(0.955588\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.50000 + 2.59808i 0.0798369 + 0.138282i 0.903179 0.429263i \(-0.141227\pi\)
−0.823343 + 0.567545i \(0.807893\pi\)
\(354\) 0 0
\(355\) 18.0000 31.1769i 0.955341 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.50000 7.79423i −0.237501 0.411364i 0.722496 0.691375i \(-0.242995\pi\)
−0.959997 + 0.280012i \(0.909662\pi\)
\(360\) 0 0
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.5000 + 28.5788i 0.863649 + 1.49588i
\(366\) 0 0
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.50000 2.59808i 0.389381 0.134885i
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.00000 0.154508
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.50000 + 12.9904i −0.383232 + 0.663777i −0.991522 0.129937i \(-0.958522\pi\)
0.608290 + 0.793715i \(0.291856\pi\)
\(384\) 0 0
\(385\) 18.0000 + 15.5885i 0.917365 + 0.794461i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.5000 + 23.3827i 0.684477 + 1.18555i 0.973601 + 0.228257i \(0.0733028\pi\)
−0.289124 + 0.957292i \(0.593364\pi\)
\(390\) 0 0
\(391\) −13.5000 23.3827i −0.682724 1.18251i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 24.0000 41.5692i 1.20757 2.09157i
\(396\) 0 0
\(397\) 6.50000 + 11.2583i 0.326226 + 0.565039i 0.981760 0.190126i \(-0.0608897\pi\)
−0.655534 + 0.755166i \(0.727556\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 0 0
\(403\) −4.00000 6.92820i −0.199254 0.345118i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.50000 + 2.59808i −0.0743522 + 0.128782i
\(408\) 0 0
\(409\) −34.0000 −1.68119 −0.840596 0.541663i \(-0.817795\pi\)
−0.840596 + 0.541663i \(0.817795\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.5000 23.3827i −0.662689 1.14781i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.50000 7.79423i −0.219839 0.380773i 0.734919 0.678155i \(-0.237220\pi\)
−0.954759 + 0.297382i \(0.903887\pi\)
\(420\) 0 0
\(421\) −17.5000 + 30.3109i −0.852898 + 1.47726i 0.0256838 + 0.999670i \(0.491824\pi\)
−0.878582 + 0.477592i \(0.841510\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 4.00000 + 3.46410i 0.193574 + 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.5000 + 23.3827i −0.650272 + 1.12630i 0.332785 + 0.943003i \(0.392012\pi\)
−0.983057 + 0.183301i \(0.941322\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −63.0000 −3.01370
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 9.00000 0.426641
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −4.50000 + 7.79423i −0.211897 + 0.367016i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 + 5.19615i 0.281284 + 0.243599i
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.50000 + 7.79423i −0.209586 + 0.363013i −0.951584 0.307388i \(-0.900545\pi\)
0.741998 + 0.670402i \(0.233878\pi\)
\(462\) 0 0
\(463\) 20.5000 + 35.5070i 0.952716 + 1.65015i 0.739511 + 0.673145i \(0.235057\pi\)
0.213205 + 0.977007i \(0.431610\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.50000 + 2.59808i 0.0694117 + 0.120225i 0.898642 0.438682i \(-0.144554\pi\)
−0.829231 + 0.558906i \(0.811221\pi\)
\(468\) 0 0
\(469\) 8.00000 + 6.92820i 0.369406 + 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.00000 −0.137940
\(474\) 0 0
\(475\) −14.0000 + 24.2487i −0.642364 + 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.50000 + 2.59808i 0.0685367 + 0.118709i 0.898257 0.439470i \(-0.144834\pi\)
−0.829721 + 0.558179i \(0.811500\pi\)
\(480\) 0 0
\(481\) −0.500000 + 0.866025i −0.0227980 + 0.0394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.50000 2.59808i −0.0681115 0.117973i
\(486\) 0 0
\(487\) −12.5000 + 21.6506i −0.566429 + 0.981084i 0.430486 + 0.902597i \(0.358342\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.5000 18.1865i −0.473858 0.820747i 0.525694 0.850674i \(-0.323806\pi\)
−0.999552 + 0.0299272i \(0.990472\pi\)
\(492\) 0 0
\(493\) −4.50000 7.79423i −0.202670 0.351034i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.0000 + 20.7846i 1.07655 + 0.932317i
\(498\) 0 0
\(499\) −12.5000 + 21.6506i −0.559577 + 0.969216i 0.437955 + 0.898997i \(0.355703\pi\)
−0.997532 + 0.0702185i \(0.977630\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.50000 + 7.79423i −0.199459 + 0.345473i −0.948353 0.317217i \(-0.897252\pi\)
0.748894 + 0.662690i \(0.230585\pi\)
\(510\) 0 0
\(511\) −27.5000 + 9.52628i −1.21653 + 0.421418i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.5000 + 33.7750i 0.859273 + 1.48830i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.50000 2.59808i 0.0657162 0.113824i −0.831295 0.555831i \(-0.812400\pi\)
0.897011 + 0.442007i \(0.145733\pi\)
\(522\) 0 0
\(523\) −3.50000 6.06218i −0.153044 0.265081i 0.779301 0.626650i \(-0.215574\pi\)
−0.932345 + 0.361569i \(0.882241\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 + 20.7846i −0.522728 + 0.905392i
\(528\) 0 0
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.50000 + 2.59808i −0.0649722 + 0.112535i
\(534\) 0 0
\(535\) −27.0000 −1.16731
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.5000 + 12.9904i −0.710705 + 0.559535i
\(540\) 0 0
\(541\) −5.50000 9.52628i −0.236463 0.409567i 0.723234 0.690604i \(-0.242655\pi\)
−0.959697 + 0.281037i \(0.909322\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.5000 33.7750i −0.835288 1.44676i
\(546\) 0 0
\(547\) 5.50000 9.52628i 0.235163 0.407314i −0.724157 0.689635i \(-0.757771\pi\)
0.959320 + 0.282321i \(0.0911043\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.0000 −0.894630
\(552\) 0 0
\(553\) 32.0000 + 27.7128i 1.36078 + 1.17847i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.50000 + 7.79423i −0.190671 + 0.330252i −0.945473 0.325701i \(-0.894400\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) −27.0000 −1.13590
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −36.0000 −1.50130
\(576\) 0 0
\(577\) 12.5000 21.6506i 0.520382 0.901328i −0.479337 0.877631i \(-0.659123\pi\)
0.999719 0.0236970i \(-0.00754370\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.5000 7.79423i 0.933457 0.323359i
\(582\) 0 0
\(583\) 9.00000 0.372742
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.50000 + 2.59808i −0.0619116 + 0.107234i −0.895320 0.445424i \(-0.853053\pi\)
0.833408 + 0.552658i \(0.186386\pi\)
\(588\) 0 0
\(589\) 28.0000 + 48.4974i 1.15372 + 1.99830i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.5000 + 33.7750i 0.800769 + 1.38697i 0.919111 + 0.394000i \(0.128909\pi\)
−0.118342 + 0.992973i \(0.537758\pi\)
\(594\) 0 0
\(595\) 4.50000 23.3827i 0.184482 0.958597i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 12.5000 21.6506i 0.509886 0.883148i −0.490049 0.871695i \(-0.663021\pi\)
0.999934 0.0114528i \(-0.00364562\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 0 0
\(607\) −6.50000 + 11.2583i −0.263827 + 0.456962i −0.967256 0.253804i \(-0.918318\pi\)
0.703429 + 0.710766i \(0.251651\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.5000 + 19.9186i −0.464481 + 0.804504i −0.999178 0.0405396i \(-0.987092\pi\)
0.534697 + 0.845044i \(0.320426\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.5000 38.9711i −0.905816 1.56892i −0.819818 0.572624i \(-0.805926\pi\)
−0.0859976 0.996295i \(-0.527408\pi\)
\(618\) 0 0
\(619\) 8.50000 + 14.7224i 0.341644 + 0.591744i 0.984738 0.174042i \(-0.0556830\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.50000 + 7.79423i −0.0600962 + 0.312269i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.00000 10.3923i 0.238103 0.412406i
\(636\) 0 0
\(637\) −5.50000 + 4.33013i −0.217918 + 0.171566i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 0 0
\(643\) 14.5000 + 25.1147i 0.571824 + 0.990429i 0.996379 + 0.0850262i \(0.0270974\pi\)
−0.424555 + 0.905402i \(0.639569\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.5000 18.1865i 0.412798 0.714986i −0.582397 0.812905i \(-0.697885\pi\)
0.995194 + 0.0979182i \(0.0312184\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.50000 12.9904i 0.293498 0.508353i −0.681137 0.732156i \(-0.738514\pi\)
0.974634 + 0.223803i \(0.0718474\pi\)
\(654\) 0 0
\(655\) 22.5000 + 38.9711i 0.879148 + 1.52273i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.50000 + 2.59808i −0.0584317 + 0.101207i −0.893762 0.448542i \(-0.851943\pi\)
0.835330 + 0.549749i \(0.185277\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −42.0000 36.3731i −1.62869 1.41049i
\(666\) 0 0
\(667\) −13.5000 23.3827i −0.522722 0.905381i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.00000 + 5.19615i 0.115814 + 0.200595i
\(672\) 0 0
\(673\) −17.5000 + 30.3109i −0.674575 + 1.16840i 0.302017 + 0.953302i \(0.402340\pi\)
−0.976593 + 0.215096i \(0.930993\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) 2.50000 0.866025i 0.0959412 0.0332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.50000 7.79423i 0.172188 0.298238i −0.766997 0.641651i \(-0.778250\pi\)
0.939184 + 0.343413i \(0.111583\pi\)
\(684\) 0 0
\(685\) −27.0000 −1.03162
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.00000 0.114291
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.0000 −0.796575
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 3.50000 6.06218i 0.132005 0.228639i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.50000 + 7.79423i −0.0564133 + 0.293132i
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −36.0000 + 62.3538i −1.34821 + 2.33517i
\(714\) 0 0
\(715\) 4.50000 + 7.79423i 0.168290 + 0.291488i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.50000 + 12.9904i 0.279703 + 0.484459i 0.971311 0.237814i \(-0.0764307\pi\)
−0.691608 + 0.722273i \(0.743097\pi\)
\(720\) 0 0
\(721\) −32.5000 + 11.2583i −1.21036 + 0.419282i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) −6.50000 + 11.2583i −0.241072 + 0.417548i −0.961020 0.276479i \(-0.910832\pi\)
0.719948 + 0.694028i \(0.244166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 0 0
\(733\) 0.500000 0.866025i 0.0184679 0.0319874i −0.856644 0.515908i \(-0.827454\pi\)
0.875112 + 0.483921i \(0.160788\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.00000 + 10.3923i 0.221013 + 0.382805i
\(738\) 0 0
\(739\) 11.5000 19.9186i 0.423034 0.732717i −0.573200 0.819415i \(-0.694298\pi\)
0.996235 + 0.0866983i \(0.0276316\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.5000 18.1865i −0.385208 0.667199i 0.606590 0.795015i \(-0.292537\pi\)
−0.991798 + 0.127815i \(0.959204\pi\)
\(744\) 0 0
\(745\) 13.5000 + 23.3827i 0.494602 + 0.856675i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.50000 23.3827i 0.164426 0.854385i
\(750\) 0 0
\(751\) −6.50000 + 11.2583i −0.237188 + 0.410822i −0.959906 0.280321i \(-0.909559\pi\)
0.722718 + 0.691143i \(0.242893\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.5000 + 38.9711i −0.815624 + 1.41270i 0.0932544 + 0.995642i \(0.470273\pi\)
−0.908879 + 0.417061i \(0.863060\pi\)
\(762\) 0 0
\(763\) 32.5000 11.2583i 1.17658 0.407579i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −11.5000 19.9186i −0.414701 0.718283i 0.580696 0.814120i \(-0.302780\pi\)
−0.995397 + 0.0958377i \(0.969447\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.5000 23.3827i 0.485561 0.841017i −0.514301 0.857610i \(-0.671949\pi\)
0.999862 + 0.0165929i \(0.00528194\pi\)
\(774\) 0 0
\(775\) 16.0000 + 27.7128i 0.574737 + 0.995474i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.5000 18.1865i 0.376202 0.651600i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −33.0000 + 57.1577i −1.17782 + 2.04004i
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.50000 23.3827i 0.160002 0.831393i
\(792\) 0 0
\(793\) 1.00000 + 1.73205i 0.0355110 + 0.0615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.5000 18.1865i −0.371929 0.644200i 0.617933 0.786231i \(-0.287970\pi\)
−0.989862 + 0.142031i \(0.954637\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33.0000 −1.16454
\(804\) 0 0
\(805\) 13.5000 70.1481i 0.475812 2.47239i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.5000 + 28.5788i −0.580109 + 1.00478i 0.415357 + 0.909659i \(0.363657\pi\)
−0.995466 + 0.0951198i \(0.969677\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −57.0000 −1.99662
\(816\) 0 0
\(817\) 7.00000