# Properties

 Label 3024.2.q.a Level 3024 Weight 2 Character orbit 3024.q Analytic conductor 24.147 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 126) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -3 + 3 \zeta_{6} ) q^{5} + ( 3 - 2 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q + ( -3 + 3 \zeta_{6} ) q^{5} + ( 3 - 2 \zeta_{6} ) q^{7} + 3 \zeta_{6} q^{11} -5 \zeta_{6} q^{13} + ( 3 - 3 \zeta_{6} ) q^{17} + 5 \zeta_{6} q^{19} + ( 3 - 3 \zeta_{6} ) q^{23} -4 \zeta_{6} q^{25} + ( -3 + 3 \zeta_{6} ) q^{29} + 4 q^{31} + ( -3 + 9 \zeta_{6} ) q^{35} + 7 \zeta_{6} q^{37} -9 \zeta_{6} q^{41} + ( 11 - 11 \zeta_{6} ) q^{43} + ( 5 - 8 \zeta_{6} ) q^{49} + ( -3 + 3 \zeta_{6} ) q^{53} -9 q^{55} + 12 q^{59} + 2 q^{61} + 15 q^{65} + 4 q^{67} + ( -11 + 11 \zeta_{6} ) q^{73} + ( 6 + 3 \zeta_{6} ) q^{77} -8 q^{79} + ( -3 + 3 \zeta_{6} ) q^{83} + 9 \zeta_{6} q^{85} + 15 \zeta_{6} q^{89} + ( -10 - 5 \zeta_{6} ) q^{91} -15 q^{95} + ( 1 - \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 3q^{5} + 4q^{7} + O(q^{10})$$ $$2q - 3q^{5} + 4q^{7} + 3q^{11} - 5q^{13} + 3q^{17} + 5q^{19} + 3q^{23} - 4q^{25} - 3q^{29} + 8q^{31} + 3q^{35} + 7q^{37} - 9q^{41} + 11q^{43} + 2q^{49} - 3q^{53} - 18q^{55} + 24q^{59} + 4q^{61} + 30q^{65} + 8q^{67} - 11q^{73} + 15q^{77} - 16q^{79} - 3q^{83} + 9q^{85} + 15q^{89} - 25q^{91} - 30q^{95} + q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1135$$ $$2593$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2305.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 −1.50000 2.59808i 0 2.00000 + 1.73205i 0 0 0
2881.1 0 0 0 −1.50000 + 2.59808i 0 2.00000 1.73205i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.q.a 2
3.b odd 2 1 1008.2.q.e 2
4.b odd 2 1 378.2.e.a 2
7.c even 3 1 3024.2.t.f 2
9.c even 3 1 3024.2.t.f 2
9.d odd 6 1 1008.2.t.c 2
12.b even 2 1 126.2.e.b 2
21.h odd 6 1 1008.2.t.c 2
28.d even 2 1 2646.2.e.e 2
28.f even 6 1 2646.2.f.i 2
28.f even 6 1 2646.2.h.f 2
28.g odd 6 1 378.2.h.b 2
28.g odd 6 1 2646.2.f.e 2
36.f odd 6 1 378.2.h.b 2
36.f odd 6 1 1134.2.g.f 2
36.h even 6 1 126.2.h.a yes 2
36.h even 6 1 1134.2.g.d 2
63.h even 3 1 inner 3024.2.q.a 2
63.j odd 6 1 1008.2.q.e 2
84.h odd 2 1 882.2.e.h 2
84.j odd 6 1 882.2.f.a 2
84.j odd 6 1 882.2.h.e 2
84.n even 6 1 126.2.h.a yes 2
84.n even 6 1 882.2.f.e 2
252.n even 6 1 2646.2.f.i 2
252.o even 6 1 882.2.f.e 2
252.o even 6 1 1134.2.g.d 2
252.r odd 6 1 882.2.e.h 2
252.r odd 6 1 7938.2.a.bd 1
252.s odd 6 1 882.2.h.e 2
252.u odd 6 1 378.2.e.a 2
252.u odd 6 1 7938.2.a.o 1
252.bb even 6 1 126.2.e.b 2
252.bb even 6 1 7938.2.a.r 1
252.bi even 6 1 2646.2.h.f 2
252.bj even 6 1 2646.2.e.e 2
252.bj even 6 1 7938.2.a.c 1
252.bl odd 6 1 1134.2.g.f 2
252.bl odd 6 1 2646.2.f.e 2
252.bn odd 6 1 882.2.f.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.b 2 12.b even 2 1
126.2.e.b 2 252.bb even 6 1
126.2.h.a yes 2 36.h even 6 1
126.2.h.a yes 2 84.n even 6 1
378.2.e.a 2 4.b odd 2 1
378.2.e.a 2 252.u odd 6 1
378.2.h.b 2 28.g odd 6 1
378.2.h.b 2 36.f odd 6 1
882.2.e.h 2 84.h odd 2 1
882.2.e.h 2 252.r odd 6 1
882.2.f.a 2 84.j odd 6 1
882.2.f.a 2 252.bn odd 6 1
882.2.f.e 2 84.n even 6 1
882.2.f.e 2 252.o even 6 1
882.2.h.e 2 84.j odd 6 1
882.2.h.e 2 252.s odd 6 1
1008.2.q.e 2 3.b odd 2 1
1008.2.q.e 2 63.j odd 6 1
1008.2.t.c 2 9.d odd 6 1
1008.2.t.c 2 21.h odd 6 1
1134.2.g.d 2 36.h even 6 1
1134.2.g.d 2 252.o even 6 1
1134.2.g.f 2 36.f odd 6 1
1134.2.g.f 2 252.bl odd 6 1
2646.2.e.e 2 28.d even 2 1
2646.2.e.e 2 252.bj even 6 1
2646.2.f.e 2 28.g odd 6 1
2646.2.f.e 2 252.bl odd 6 1
2646.2.f.i 2 28.f even 6 1
2646.2.f.i 2 252.n even 6 1
2646.2.h.f 2 28.f even 6 1
2646.2.h.f 2 252.bi even 6 1
3024.2.q.a 2 1.a even 1 1 trivial
3024.2.q.a 2 63.h even 3 1 inner
3024.2.t.f 2 7.c even 3 1
3024.2.t.f 2 9.c even 3 1
7938.2.a.c 1 252.bj even 6 1
7938.2.a.o 1 252.u odd 6 1
7938.2.a.r 1 252.bb even 6 1
7938.2.a.bd 1 252.r odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3024, [\chi])$$:

 $$T_{5}^{2} + 3 T_{5} + 9$$ $$T_{11}^{2} - 3 T_{11} + 9$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 + 3 T + 4 T^{2} + 15 T^{3} + 25 T^{4}$$
$7$ $$1 - 4 T + 7 T^{2}$$
$11$ $$1 - 3 T - 2 T^{2} - 33 T^{3} + 121 T^{4}$$
$13$ $$( 1 - 2 T + 13 T^{2} )( 1 + 7 T + 13 T^{2} )$$
$17$ $$1 - 3 T - 8 T^{2} - 51 T^{3} + 289 T^{4}$$
$19$ $$1 - 5 T + 6 T^{2} - 95 T^{3} + 361 T^{4}$$
$23$ $$1 - 3 T - 14 T^{2} - 69 T^{3} + 529 T^{4}$$
$29$ $$1 + 3 T - 20 T^{2} + 87 T^{3} + 841 T^{4}$$
$31$ $$( 1 - 4 T + 31 T^{2} )^{2}$$
$37$ $$1 - 7 T + 12 T^{2} - 259 T^{3} + 1369 T^{4}$$
$41$ $$1 + 9 T + 40 T^{2} + 369 T^{3} + 1681 T^{4}$$
$43$ $$1 - 11 T + 78 T^{2} - 473 T^{3} + 1849 T^{4}$$
$47$ $$( 1 + 47 T^{2} )^{2}$$
$53$ $$1 + 3 T - 44 T^{2} + 159 T^{3} + 2809 T^{4}$$
$59$ $$( 1 - 12 T + 59 T^{2} )^{2}$$
$61$ $$( 1 - 2 T + 61 T^{2} )^{2}$$
$67$ $$( 1 - 4 T + 67 T^{2} )^{2}$$
$71$ $$( 1 + 71 T^{2} )^{2}$$
$73$ $$1 + 11 T + 48 T^{2} + 803 T^{3} + 5329 T^{4}$$
$79$ $$( 1 + 8 T + 79 T^{2} )^{2}$$
$83$ $$1 + 3 T - 74 T^{2} + 249 T^{3} + 6889 T^{4}$$
$89$ $$1 - 15 T + 136 T^{2} - 1335 T^{3} + 7921 T^{4}$$
$97$ $$1 - T - 96 T^{2} - 97 T^{3} + 9409 T^{4}$$