Properties

Label 3024.2.k.j
Level 3024
Weight 2
Character orbit 3024.k
Analytic conductor 24.147
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( 3 - \zeta_{12}^{2} ) q^{7} +O(q^{10})\) \( q + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( 3 - \zeta_{12}^{2} ) q^{7} + 3 \zeta_{12}^{3} q^{11} + ( -4 + 8 \zeta_{12}^{2} ) q^{13} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{17} + ( 2 - 4 \zeta_{12}^{2} ) q^{19} -6 \zeta_{12}^{3} q^{23} -2 q^{25} -6 \zeta_{12}^{3} q^{29} + ( -3 + 6 \zeta_{12}^{2} ) q^{31} + ( -5 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{35} -2 q^{37} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{41} + 2 q^{43} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{47} + ( 8 - 5 \zeta_{12}^{2} ) q^{49} + 3 \zeta_{12}^{3} q^{53} + ( 3 - 6 \zeta_{12}^{2} ) q^{55} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{59} + ( 4 - 8 \zeta_{12}^{2} ) q^{61} -12 \zeta_{12}^{3} q^{65} -2 q^{67} -12 \zeta_{12}^{3} q^{71} + ( 7 - 14 \zeta_{12}^{2} ) q^{73} + ( 3 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{77} -8 q^{79} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{83} + 12 q^{85} + ( -12 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{89} + ( -4 + 20 \zeta_{12}^{2} ) q^{91} + 6 \zeta_{12}^{3} q^{95} + ( -7 + 14 \zeta_{12}^{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 10q^{7} + O(q^{10}) \) \( 4q + 10q^{7} - 8q^{25} - 8q^{37} + 8q^{43} + 22q^{49} - 8q^{67} - 32q^{79} + 48q^{85} + 24q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0 0 0 −1.73205 0 2.50000 0.866025i 0 0 0
1889.2 0 0 0 −1.73205 0 2.50000 + 0.866025i 0 0 0
1889.3 0 0 0 1.73205 0 2.50000 0.866025i 0 0 0
1889.4 0 0 0 1.73205 0 2.50000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.k.j 4
3.b odd 2 1 inner 3024.2.k.j 4
4.b odd 2 1 378.2.d.a 4
7.b odd 2 1 inner 3024.2.k.j 4
12.b even 2 1 378.2.d.a 4
21.c even 2 1 inner 3024.2.k.j 4
28.d even 2 1 378.2.d.a 4
36.f odd 6 1 1134.2.m.e 4
36.f odd 6 1 1134.2.m.f 4
36.h even 6 1 1134.2.m.e 4
36.h even 6 1 1134.2.m.f 4
84.h odd 2 1 378.2.d.a 4
252.s odd 6 1 1134.2.m.e 4
252.s odd 6 1 1134.2.m.f 4
252.bi even 6 1 1134.2.m.e 4
252.bi even 6 1 1134.2.m.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.d.a 4 4.b odd 2 1
378.2.d.a 4 12.b even 2 1
378.2.d.a 4 28.d even 2 1
378.2.d.a 4 84.h odd 2 1
1134.2.m.e 4 36.f odd 6 1
1134.2.m.e 4 36.h even 6 1
1134.2.m.e 4 252.s odd 6 1
1134.2.m.e 4 252.bi even 6 1
1134.2.m.f 4 36.f odd 6 1
1134.2.m.f 4 36.h even 6 1
1134.2.m.f 4 252.s odd 6 1
1134.2.m.f 4 252.bi even 6 1
3024.2.k.j 4 1.a even 1 1 trivial
3024.2.k.j 4 3.b odd 2 1 inner
3024.2.k.j 4 7.b odd 2 1 inner
3024.2.k.j 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5}^{2} - 3 \)
\( T_{11}^{2} + 9 \)
\( T_{13}^{2} + 48 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 + 7 T^{2} + 25 T^{4} )^{2} \)
$7$ \( ( 1 - 5 T + 7 T^{2} )^{2} \)
$11$ \( ( 1 - 13 T^{2} + 121 T^{4} )^{2} \)
$13$ \( ( 1 - 2 T + 13 T^{2} )^{2}( 1 + 2 T + 13 T^{2} )^{2} \)
$17$ \( ( 1 - 14 T^{2} + 289 T^{4} )^{2} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )^{2}( 1 + 8 T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 10 T^{2} + 529 T^{4} )^{2} \)
$29$ \( ( 1 - 22 T^{2} + 841 T^{4} )^{2} \)
$31$ \( ( 1 - 35 T^{2} + 961 T^{4} )^{2} \)
$37$ \( ( 1 + 2 T + 37 T^{2} )^{4} \)
$41$ \( ( 1 + 70 T^{2} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 - 2 T + 43 T^{2} )^{4} \)
$47$ \( ( 1 + 82 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 - 97 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 + 106 T^{2} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2}( 1 + 14 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 + 2 T + 67 T^{2} )^{4} \)
$71$ \( ( 1 + 2 T^{2} + 5041 T^{4} )^{2} \)
$73$ \( ( 1 + T^{2} + 5329 T^{4} )^{2} \)
$79$ \( ( 1 + 8 T + 79 T^{2} )^{4} \)
$83$ \( ( 1 + 163 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 + 70 T^{2} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 - 47 T^{2} + 9409 T^{4} )^{2} \)
show more
show less