Properties

Label 3024.2.k.i
Level 3024
Weight 2
Character orbit 3024.k
Analytic conductor 24.147
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
Defining polynomial: \(x^{4} - 5 x^{2} + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} + ( 2 - \beta_{2} ) q^{7} +O(q^{10})\) \( q + \beta_{3} q^{5} + ( 2 - \beta_{2} ) q^{7} -\beta_{1} q^{11} -2 \beta_{2} q^{13} + 3 \beta_{2} q^{19} -\beta_{1} q^{23} + 10 q^{25} -2 \beta_{1} q^{29} -\beta_{2} q^{31} + ( -3 \beta_{1} + 2 \beta_{3} ) q^{35} - q^{37} + \beta_{3} q^{41} -2 q^{43} -2 \beta_{3} q^{47} + ( 1 - 4 \beta_{2} ) q^{49} + 4 \beta_{1} q^{53} -5 \beta_{2} q^{55} + 2 \beta_{3} q^{59} -4 \beta_{2} q^{61} -6 \beta_{1} q^{65} + 10 q^{67} + 5 \beta_{1} q^{71} -6 \beta_{2} q^{73} + ( -2 \beta_{1} - \beta_{3} ) q^{77} -2 q^{79} -2 \beta_{3} q^{83} -3 \beta_{3} q^{89} + ( -6 - 4 \beta_{2} ) q^{91} + 9 \beta_{1} q^{95} + 8 \beta_{2} q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 8q^{7} + O(q^{10}) \) \( 4q + 8q^{7} + 40q^{25} - 4q^{37} - 8q^{43} + 4q^{49} + 40q^{67} - 8q^{79} - 24q^{91} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 5 x^{2} + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{3} \)\(/5\)
\(\beta_{2}\)\(=\)\((\)\( 2 \nu^{2} - 5 \)\()/5\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + 10 \nu \)\()/5\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(5 \beta_{2} + 5\)\()/2\)
\(\nu^{3}\)\(=\)\(5 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
−1.93649 1.11803i
−1.93649 + 1.11803i
1.93649 + 1.11803i
1.93649 1.11803i
0 0 0 −3.87298 0 2.00000 1.73205i 0 0 0
1889.2 0 0 0 −3.87298 0 2.00000 + 1.73205i 0 0 0
1889.3 0 0 0 3.87298 0 2.00000 1.73205i 0 0 0
1889.4 0 0 0 3.87298 0 2.00000 + 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.k.i 4
3.b odd 2 1 inner 3024.2.k.i 4
4.b odd 2 1 189.2.c.b 4
7.b odd 2 1 inner 3024.2.k.i 4
12.b even 2 1 189.2.c.b 4
21.c even 2 1 inner 3024.2.k.i 4
28.d even 2 1 189.2.c.b 4
36.f odd 6 1 567.2.o.c 4
36.f odd 6 1 567.2.o.d 4
36.h even 6 1 567.2.o.c 4
36.h even 6 1 567.2.o.d 4
84.h odd 2 1 189.2.c.b 4
252.s odd 6 1 567.2.o.c 4
252.s odd 6 1 567.2.o.d 4
252.bi even 6 1 567.2.o.c 4
252.bi even 6 1 567.2.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.c.b 4 4.b odd 2 1
189.2.c.b 4 12.b even 2 1
189.2.c.b 4 28.d even 2 1
189.2.c.b 4 84.h odd 2 1
567.2.o.c 4 36.f odd 6 1
567.2.o.c 4 36.h even 6 1
567.2.o.c 4 252.s odd 6 1
567.2.o.c 4 252.bi even 6 1
567.2.o.d 4 36.f odd 6 1
567.2.o.d 4 36.h even 6 1
567.2.o.d 4 252.s odd 6 1
567.2.o.d 4 252.bi even 6 1
3024.2.k.i 4 1.a even 1 1 trivial
3024.2.k.i 4 3.b odd 2 1 inner
3024.2.k.i 4 7.b odd 2 1 inner
3024.2.k.i 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5}^{2} - 15 \)
\( T_{11}^{2} + 5 \)
\( T_{13}^{2} + 12 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 - 5 T^{2} + 25 T^{4} )^{2} \)
$7$ \( ( 1 - 4 T + 7 T^{2} )^{2} \)
$11$ \( ( 1 - 17 T^{2} + 121 T^{4} )^{2} \)
$13$ \( ( 1 - 14 T^{2} + 169 T^{4} )^{2} \)
$17$ \( ( 1 + 17 T^{2} )^{4} \)
$19$ \( ( 1 - 7 T + 19 T^{2} )^{2}( 1 + 7 T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 41 T^{2} + 529 T^{4} )^{2} \)
$29$ \( ( 1 - 38 T^{2} + 841 T^{4} )^{2} \)
$31$ \( ( 1 - 11 T + 31 T^{2} )^{2}( 1 + 11 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 + T + 37 T^{2} )^{4} \)
$41$ \( ( 1 + 67 T^{2} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 + 2 T + 43 T^{2} )^{4} \)
$47$ \( ( 1 + 34 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 - 26 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 + 58 T^{2} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2}( 1 + 14 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 10 T + 67 T^{2} )^{4} \)
$71$ \( ( 1 - 17 T^{2} + 5041 T^{4} )^{2} \)
$73$ \( ( 1 - 38 T^{2} + 5329 T^{4} )^{2} \)
$79$ \( ( 1 + 2 T + 79 T^{2} )^{4} \)
$83$ \( ( 1 + 106 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 + 43 T^{2} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 - 14 T + 97 T^{2} )^{2}( 1 + 14 T + 97 T^{2} )^{2} \)
show more
show less