Properties

 Label 3024.2.k.g Level $3024$ Weight $2$ Character orbit 3024.k Analytic conductor $24.147$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.k (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{3})$$ Defining polynomial: $$x^{4} + 4 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 189) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{2} q^{5} + ( -1 - \beta_{3} ) q^{7} +O(q^{10})$$ $$q -\beta_{2} q^{5} + ( -1 - \beta_{3} ) q^{7} -\beta_{1} q^{11} + \beta_{3} q^{13} + 3 \beta_{2} q^{17} + 3 \beta_{3} q^{19} + 2 \beta_{1} q^{23} -2 q^{25} -5 \beta_{1} q^{29} -\beta_{3} q^{31} + ( 3 \beta_{1} + \beta_{2} ) q^{35} + 5 q^{37} + 5 \beta_{2} q^{41} -5 q^{43} + 5 \beta_{2} q^{47} + ( -5 + 2 \beta_{3} ) q^{49} -8 \beta_{1} q^{53} + \beta_{3} q^{55} -5 \beta_{2} q^{59} -\beta_{3} q^{61} -3 \beta_{1} q^{65} -2 q^{67} -10 \beta_{1} q^{71} + ( \beta_{1} - 2 \beta_{2} ) q^{77} + 13 q^{79} -\beta_{2} q^{83} -9 q^{85} -6 \beta_{2} q^{89} + ( 6 - \beta_{3} ) q^{91} -9 \beta_{1} q^{95} -7 \beta_{3} q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 4q^{7} + O(q^{10})$$ $$4q - 4q^{7} - 8q^{25} + 20q^{37} - 20q^{43} - 20q^{49} - 8q^{67} + 52q^{79} - 36q^{85} + 24q^{91} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 4 x^{2} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{3} + 3 \nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} + 2$$ $$\beta_{3}$$ $$=$$ $$\nu^{3} + 5 \nu$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} - \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} - 2$$ $$\nu^{3}$$ $$=$$ $$($$$$-3 \beta_{3} + 5 \beta_{1}$$$$)/2$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1135$$ $$2593$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1889.1
 0.517638i − 0.517638i 1.93185i − 1.93185i
0 0 0 −1.73205 0 −1.00000 2.44949i 0 0 0
1889.2 0 0 0 −1.73205 0 −1.00000 + 2.44949i 0 0 0
1889.3 0 0 0 1.73205 0 −1.00000 2.44949i 0 0 0
1889.4 0 0 0 1.73205 0 −1.00000 + 2.44949i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.k.g 4
3.b odd 2 1 inner 3024.2.k.g 4
4.b odd 2 1 189.2.c.c 4
7.b odd 2 1 inner 3024.2.k.g 4
12.b even 2 1 189.2.c.c 4
21.c even 2 1 inner 3024.2.k.g 4
28.d even 2 1 189.2.c.c 4
36.f odd 6 2 567.2.o.e 8
36.h even 6 2 567.2.o.e 8
84.h odd 2 1 189.2.c.c 4
252.s odd 6 2 567.2.o.e 8
252.bi even 6 2 567.2.o.e 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.c.c 4 4.b odd 2 1
189.2.c.c 4 12.b even 2 1
189.2.c.c 4 28.d even 2 1
189.2.c.c 4 84.h odd 2 1
567.2.o.e 8 36.f odd 6 2
567.2.o.e 8 36.h even 6 2
567.2.o.e 8 252.s odd 6 2
567.2.o.e 8 252.bi even 6 2
3024.2.k.g 4 1.a even 1 1 trivial
3024.2.k.g 4 3.b odd 2 1 inner
3024.2.k.g 4 7.b odd 2 1 inner
3024.2.k.g 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3024, [\chi])$$:

 $$T_{5}^{2} - 3$$ $$T_{11}^{2} + 2$$ $$T_{13}^{2} + 6$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$( 1 + 7 T^{2} + 25 T^{4} )^{2}$$
$7$ $$( 1 + 2 T + 7 T^{2} )^{2}$$
$11$ $$( 1 - 20 T^{2} + 121 T^{4} )^{2}$$
$13$ $$( 1 - 20 T^{2} + 169 T^{4} )^{2}$$
$17$ $$( 1 + 7 T^{2} + 289 T^{4} )^{2}$$
$19$ $$( 1 + 16 T^{2} + 361 T^{4} )^{2}$$
$23$ $$( 1 - 38 T^{2} + 529 T^{4} )^{2}$$
$29$ $$( 1 - 8 T^{2} + 841 T^{4} )^{2}$$
$31$ $$( 1 - 56 T^{2} + 961 T^{4} )^{2}$$
$37$ $$( 1 - 5 T + 37 T^{2} )^{4}$$
$41$ $$( 1 + 7 T^{2} + 1681 T^{4} )^{2}$$
$43$ $$( 1 + 5 T + 43 T^{2} )^{4}$$
$47$ $$( 1 + 19 T^{2} + 2209 T^{4} )^{2}$$
$53$ $$( 1 + 22 T^{2} + 2809 T^{4} )^{2}$$
$59$ $$( 1 + 43 T^{2} + 3481 T^{4} )^{2}$$
$61$ $$( 1 - 116 T^{2} + 3721 T^{4} )^{2}$$
$67$ $$( 1 + 2 T + 67 T^{2} )^{4}$$
$71$ $$( 1 + 58 T^{2} + 5041 T^{4} )^{2}$$
$73$ $$( 1 - 73 T^{2} )^{4}$$
$79$ $$( 1 - 13 T + 79 T^{2} )^{4}$$
$83$ $$( 1 + 163 T^{2} + 6889 T^{4} )^{2}$$
$89$ $$( 1 + 70 T^{2} + 7921 T^{4} )^{2}$$
$97$ $$( 1 + 100 T^{2} + 9409 T^{4} )^{2}$$