Properties

 Label 3024.2.k.f Level 3024 Weight 2 Character orbit 3024.k Analytic conductor 24.147 Analytic rank 0 Dimension 4 CM no Inner twists 4

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.k (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$2^{2}\cdot 3$$ Twist minimal: no (minimal twist has level 378) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{5} + ( -3 + 2 \zeta_{12}^{2} ) q^{7} +O(q^{10})$$ $$q + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{5} + ( -3 + 2 \zeta_{12}^{2} ) q^{7} + 6 \zeta_{12}^{3} q^{11} + ( -1 + 2 \zeta_{12}^{2} ) q^{13} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{17} + ( -4 + 8 \zeta_{12}^{2} ) q^{19} -3 \zeta_{12}^{3} q^{23} + 7 q^{25} -3 \zeta_{12}^{3} q^{29} + ( -3 + 6 \zeta_{12}^{2} ) q^{31} + ( 8 \zeta_{12} - 10 \zeta_{12}^{3} ) q^{35} -2 q^{37} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{41} + 11 q^{43} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{47} + ( 5 - 8 \zeta_{12}^{2} ) q^{49} -3 \zeta_{12}^{3} q^{53} + ( 12 - 24 \zeta_{12}^{2} ) q^{55} + ( -10 \zeta_{12} + 5 \zeta_{12}^{3} ) q^{59} + ( -8 + 16 \zeta_{12}^{2} ) q^{61} -6 \zeta_{12}^{3} q^{65} + 7 q^{67} + 3 \zeta_{12}^{3} q^{71} + ( 4 - 8 \zeta_{12}^{2} ) q^{73} + ( -12 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{77} -8 q^{79} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{83} -6 q^{85} + ( -6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{89} + ( -1 - 4 \zeta_{12}^{2} ) q^{91} -24 \zeta_{12}^{3} q^{95} + ( -4 + 8 \zeta_{12}^{2} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 8q^{7} + O(q^{10})$$ $$4q - 8q^{7} + 28q^{25} - 8q^{37} + 44q^{43} + 4q^{49} + 28q^{67} - 32q^{79} - 24q^{85} - 12q^{91} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1135$$ $$2593$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1889.1
 0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 − 0.500000i
0 0 0 −3.46410 0 −2.00000 1.73205i 0 0 0
1889.2 0 0 0 −3.46410 0 −2.00000 + 1.73205i 0 0 0
1889.3 0 0 0 3.46410 0 −2.00000 1.73205i 0 0 0
1889.4 0 0 0 3.46410 0 −2.00000 + 1.73205i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.k.f 4
3.b odd 2 1 inner 3024.2.k.f 4
4.b odd 2 1 378.2.d.c 4
7.b odd 2 1 inner 3024.2.k.f 4
12.b even 2 1 378.2.d.c 4
21.c even 2 1 inner 3024.2.k.f 4
28.d even 2 1 378.2.d.c 4
36.f odd 6 1 1134.2.m.a 4
36.f odd 6 1 1134.2.m.d 4
36.h even 6 1 1134.2.m.a 4
36.h even 6 1 1134.2.m.d 4
84.h odd 2 1 378.2.d.c 4
252.s odd 6 1 1134.2.m.a 4
252.s odd 6 1 1134.2.m.d 4
252.bi even 6 1 1134.2.m.a 4
252.bi even 6 1 1134.2.m.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.d.c 4 4.b odd 2 1
378.2.d.c 4 12.b even 2 1
378.2.d.c 4 28.d even 2 1
378.2.d.c 4 84.h odd 2 1
1134.2.m.a 4 36.f odd 6 1
1134.2.m.a 4 36.h even 6 1
1134.2.m.a 4 252.s odd 6 1
1134.2.m.a 4 252.bi even 6 1
1134.2.m.d 4 36.f odd 6 1
1134.2.m.d 4 36.h even 6 1
1134.2.m.d 4 252.s odd 6 1
1134.2.m.d 4 252.bi even 6 1
3024.2.k.f 4 1.a even 1 1 trivial
3024.2.k.f 4 3.b odd 2 1 inner
3024.2.k.f 4 7.b odd 2 1 inner
3024.2.k.f 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3024, [\chi])$$:

 $$T_{5}^{2} - 12$$ $$T_{11}^{2} + 36$$ $$T_{13}^{2} + 3$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$( 1 - 2 T^{2} + 25 T^{4} )^{2}$$
$7$ $$( 1 + 4 T + 7 T^{2} )^{2}$$
$11$ $$( 1 + 14 T^{2} + 121 T^{4} )^{2}$$
$13$ $$( 1 - 7 T + 13 T^{2} )^{2}( 1 + 7 T + 13 T^{2} )^{2}$$
$17$ $$( 1 + 31 T^{2} + 289 T^{4} )^{2}$$
$19$ $$( 1 + 10 T^{2} + 361 T^{4} )^{2}$$
$23$ $$( 1 - 37 T^{2} + 529 T^{4} )^{2}$$
$29$ $$( 1 - 49 T^{2} + 841 T^{4} )^{2}$$
$31$ $$( 1 - 35 T^{2} + 961 T^{4} )^{2}$$
$37$ $$( 1 + 2 T + 37 T^{2} )^{4}$$
$41$ $$( 1 + 34 T^{2} + 1681 T^{4} )^{2}$$
$43$ $$( 1 - 11 T + 43 T^{2} )^{4}$$
$47$ $$( 1 + 46 T^{2} + 2209 T^{4} )^{2}$$
$53$ $$( 1 - 97 T^{2} + 2809 T^{4} )^{2}$$
$59$ $$( 1 + 43 T^{2} + 3481 T^{4} )^{2}$$
$61$ $$( 1 + 70 T^{2} + 3721 T^{4} )^{2}$$
$67$ $$( 1 - 7 T + 67 T^{2} )^{4}$$
$71$ $$( 1 - 133 T^{2} + 5041 T^{4} )^{2}$$
$73$ $$( 1 - 98 T^{2} + 5329 T^{4} )^{2}$$
$79$ $$( 1 + 8 T + 79 T^{2} )^{4}$$
$83$ $$( 1 + 154 T^{2} + 6889 T^{4} )^{2}$$
$89$ $$( 1 + 151 T^{2} + 7921 T^{4} )^{2}$$
$97$ $$( 1 - 146 T^{2} + 9409 T^{4} )^{2}$$