# Properties

 Label 3024.2.k.d Level $3024$ Weight $2$ Character orbit 3024.k Analytic conductor $24.147$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.k (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 756) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q + 3 q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} + ( -3 + 6 \zeta_{6} ) q^{11} + ( 2 - 4 \zeta_{6} ) q^{13} -6 q^{17} + ( -1 + 2 \zeta_{6} ) q^{19} + ( 3 - 6 \zeta_{6} ) q^{23} + 4 q^{25} + ( -6 + 12 \zeta_{6} ) q^{29} + ( -3 + 6 \zeta_{6} ) q^{31} + ( -9 + 6 \zeta_{6} ) q^{35} + q^{37} -3 q^{41} -10 q^{43} + 6 q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + ( -9 + 18 \zeta_{6} ) q^{55} -6 q^{59} + ( -8 + 16 \zeta_{6} ) q^{61} + ( 6 - 12 \zeta_{6} ) q^{65} -2 q^{67} + ( 3 - 6 \zeta_{6} ) q^{71} + ( -2 + 4 \zeta_{6} ) q^{73} + ( -3 - 12 \zeta_{6} ) q^{77} -14 q^{79} -6 q^{83} -18 q^{85} + 9 q^{89} + ( 2 + 8 \zeta_{6} ) q^{91} + ( -3 + 6 \zeta_{6} ) q^{95} + ( -4 + 8 \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 6q^{5} - 4q^{7} + O(q^{10})$$ $$2q + 6q^{5} - 4q^{7} - 12q^{17} + 8q^{25} - 12q^{35} + 2q^{37} - 6q^{41} - 20q^{43} + 12q^{47} + 2q^{49} - 12q^{59} - 4q^{67} - 18q^{77} - 28q^{79} - 12q^{83} - 36q^{85} + 18q^{89} + 12q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1135$$ $$2593$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1889.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 3.00000 0 −2.00000 1.73205i 0 0 0
1889.2 0 0 0 3.00000 0 −2.00000 + 1.73205i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.k.d 2
3.b odd 2 1 3024.2.k.a 2
4.b odd 2 1 756.2.f.c yes 2
7.b odd 2 1 3024.2.k.a 2
12.b even 2 1 756.2.f.a 2
21.c even 2 1 inner 3024.2.k.d 2
28.d even 2 1 756.2.f.a 2
36.f odd 6 1 2268.2.x.a 2
36.f odd 6 1 2268.2.x.b 2
36.h even 6 1 2268.2.x.g 2
36.h even 6 1 2268.2.x.h 2
84.h odd 2 1 756.2.f.c yes 2
252.s odd 6 1 2268.2.x.a 2
252.s odd 6 1 2268.2.x.b 2
252.bi even 6 1 2268.2.x.g 2
252.bi even 6 1 2268.2.x.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.f.a 2 12.b even 2 1
756.2.f.a 2 28.d even 2 1
756.2.f.c yes 2 4.b odd 2 1
756.2.f.c yes 2 84.h odd 2 1
2268.2.x.a 2 36.f odd 6 1
2268.2.x.a 2 252.s odd 6 1
2268.2.x.b 2 36.f odd 6 1
2268.2.x.b 2 252.s odd 6 1
2268.2.x.g 2 36.h even 6 1
2268.2.x.g 2 252.bi even 6 1
2268.2.x.h 2 36.h even 6 1
2268.2.x.h 2 252.bi even 6 1
3024.2.k.a 2 3.b odd 2 1
3024.2.k.a 2 7.b odd 2 1
3024.2.k.d 2 1.a even 1 1 trivial
3024.2.k.d 2 21.c even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3024, [\chi])$$:

 $$T_{5} - 3$$ $$T_{11}^{2} + 27$$ $$T_{13}^{2} + 12$$