Defining parameters
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.k (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(25\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3024, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 612 | 64 | 548 |
Cusp forms | 540 | 64 | 476 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3024, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 2}\)