Properties

Label 3024.2.fj
Level 3024
Weight 2
Character orbit fj
Rep. character \(\chi_{3024}(209,\cdot)\)
Character field \(\Q(\zeta_{18})\)
Dimension 852
Sturm bound 1152

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3024.fj (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 189 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3024, [\chi])\).

Total New Old
Modular forms 3528 876 2652
Cusp forms 3384 852 2532
Eisenstein series 144 24 120

Trace form

\( 852q + 6q^{7} - 12q^{9} + O(q^{10}) \) \( 852q + 6q^{7} - 12q^{9} + 12q^{11} + 12q^{15} - 6q^{21} + 12q^{23} - 12q^{25} + 12q^{29} + 9q^{35} - 6q^{37} + 48q^{39} + 12q^{43} - 6q^{49} - 6q^{51} - 30q^{57} + 36q^{63} - 36q^{65} + 12q^{67} + 18q^{71} + 18q^{77} + 12q^{79} + 12q^{81} + 18q^{85} + 3q^{91} - 12q^{93} + 258q^{95} - 204q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database