Properties

Label 3024.2.ep
Level 3024
Weight 2
Character orbit ep
Rep. character \(\chi_{3024}(125,\cdot)\)
Character field \(\Q(\zeta_{12})\)
Dimension 752
Sturm bound 1152

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3024.ep (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 1008 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3024, [\chi])\).

Total New Old
Modular forms 2352 784 1568
Cusp forms 2256 752 1504
Eisenstein series 96 32 64

Trace form

\( 752q + 12q^{2} - 4q^{4} + O(q^{10}) \) \( 752q + 12q^{2} - 4q^{4} + 12q^{11} + 6q^{14} - 4q^{16} - 4q^{22} - 24q^{28} + 12q^{29} + 12q^{32} - 16q^{37} - 4q^{43} - 4q^{49} + 12q^{50} + 48q^{56} - 4q^{58} - 16q^{64} + 24q^{65} - 4q^{67} - 16q^{70} + 96q^{74} + 6q^{77} - 8q^{79} - 24q^{85} - 48q^{86} - 4q^{88} + 20q^{91} + 12q^{92} + 24q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database