Properties

Label 3024.2.dp
Level 3024
Weight 2
Character orbit dp
Rep. character \(\chi_{3024}(827,\cdot)\)
Character field \(\Q(\zeta_{12})\)
Dimension 576
Sturm bound 1152

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3024.dp (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 144 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3024, [\chi])\).

Total New Old
Modular forms 2352 576 1776
Cusp forms 2256 576 1680
Eisenstein series 96 0 96

Trace form

\( 576q + O(q^{10}) \) \( 576q - 84q^{20} + 48q^{46} - 288q^{49} + 156q^{50} - 36q^{58} - 72q^{59} + 72q^{64} + 156q^{68} + 84q^{74} + 24q^{76} + 72q^{82} + 60q^{86} - 48q^{88} + 228q^{92} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database