Properties

Label 3024.2.dk
Level 3024
Weight 2
Character orbit dk
Rep. character \(\chi_{3024}(337,\cdot)\)
Character field \(\Q(\zeta_{9})\)
Dimension 648
Sturm bound 1152

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3024.dk (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3024, [\chi])\).

Total New Old
Modular forms 3528 648 2880
Cusp forms 3384 648 2736
Eisenstein series 144 0 144

Trace form

\( 648q + O(q^{10}) \) \( 648q - 36q^{27} - 12q^{33} - 36q^{35} - 36q^{39} - 12q^{41} - 36q^{47} + 12q^{57} + 36q^{59} + 24q^{65} + 84q^{71} + 84q^{75} + 24q^{81} + 36q^{87} - 12q^{89} + 36q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database