# Properties

 Label 3024.2.cc.a Level 3024 Weight 2 Character orbit 3024.cc Analytic conductor 24.147 Analytic rank 0 Dimension 12 CM no Inner twists 4

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3024 = 2^{4} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3024.cc (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.1467615712$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$3^{2}$$ Twist minimal: no (minimal twist has level 63) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{11}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{10} q^{5} + ( -\beta_{3} + \beta_{4} + \beta_{8} + \beta_{9} ) q^{7} +O(q^{10})$$ $$q -\beta_{10} q^{5} + ( -\beta_{3} + \beta_{4} + \beta_{8} + \beta_{9} ) q^{7} + ( -\beta_{3} + \beta_{4} - \beta_{5} - \beta_{8} ) q^{11} + ( \beta_{2} + 2 \beta_{7} + \beta_{10} ) q^{13} + ( -\beta_{6} - \beta_{11} ) q^{17} + ( \beta_{2} - \beta_{6} + \beta_{7} - \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{19} + ( 1 + \beta_{1} + \beta_{5} ) q^{23} + ( \beta_{1} + \beta_{3} ) q^{25} + ( -4 + \beta_{1} - \beta_{3} + \beta_{5} ) q^{29} + ( 2 \beta_{6} + 2 \beta_{7} + \beta_{10} ) q^{31} + ( -1 - \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - 2 \beta_{8} - \beta_{11} ) q^{35} + ( -1 + \beta_{1} - \beta_{4} ) q^{37} + ( \beta_{2} - 2 \beta_{9} + 2 \beta_{10} ) q^{41} + ( 2 \beta_{1} + 3 \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{8} ) q^{43} + ( -2 \beta_{2} - 2 \beta_{6} + \beta_{7} + \beta_{9} + \beta_{10} + \beta_{11} ) q^{47} + ( -1 + 2 \beta_{1} - 4 \beta_{3} - 3 \beta_{5} + 2 \beta_{6} ) q^{49} + ( -1 - 2 \beta_{1} - \beta_{3} - 2 \beta_{4} + \beta_{5} - 4 \beta_{8} ) q^{53} + ( -2 \beta_{2} + \beta_{6} + 2 \beta_{9} - \beta_{11} ) q^{55} + ( 2 \beta_{2} - \beta_{6} - 4 \beta_{9} + \beta_{10} + 2 \beta_{11} ) q^{59} + ( -\beta_{9} - \beta_{11} ) q^{61} + ( 10 - 2 \beta_{1} + \beta_{3} + \beta_{4} - 4 \beta_{5} - \beta_{8} ) q^{65} + ( -1 - 2 \beta_{1} + \beta_{3} + 2 \beta_{5} - 3 \beta_{8} ) q^{67} + ( -2 - 2 \beta_{1} + 3 \beta_{3} - 2 \beta_{4} + 7 \beta_{5} - 4 \beta_{8} ) q^{71} + ( -3 \beta_{2} - 3 \beta_{6} + \beta_{7} + 3 \beta_{9} + 2 \beta_{10} + 3 \beta_{11} ) q^{73} + ( 1 - \beta_{2} + \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{8} + 2 \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{77} + ( \beta_{1} - 2 \beta_{3} + 3 \beta_{4} + 3 \beta_{8} ) q^{79} + ( -4 \beta_{2} + 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{83} + ( 3 - 6 \beta_{1} + 6 \beta_{3} + 3 \beta_{5} - 6 \beta_{8} ) q^{85} + ( -3 \beta_{2} - 3 \beta_{9} ) q^{89} + ( 5 \beta_{1} - 4 \beta_{3} + 3 \beta_{4} - 4 \beta_{5} - 2 \beta_{6} + \beta_{7} + 2 \beta_{10} + 2 \beta_{11} ) q^{91} + ( 6 - 3 \beta_{1} - 3 \beta_{3} + 6 \beta_{4} + 3 \beta_{5} + 3 \beta_{8} ) q^{95} + ( \beta_{7} - \beta_{10} + \beta_{11} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12q + 2q^{7} + O(q^{10})$$ $$12q + 2q^{7} + 24q^{23} - 30q^{29} - 4q^{37} + 10q^{43} + 6q^{49} + 78q^{65} - 12q^{67} + 24q^{77} + 6q^{79} - 6q^{85} + 24q^{91} + 72q^{95} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-28 \nu^{10} + 148 \nu^{8} + 446 \nu^{6} - 3807 \nu^{4} + 17052 \nu^{2} + 4446$$$$)/12897$$ $$\beta_{2}$$ $$=$$ $$($$$$-49 \nu^{11} + 259 \nu^{9} - 1369 \nu^{7} + 861 \nu^{5} - 252 \nu^{3} - 15864 \nu$$$$)/4299$$ $$\beta_{3}$$ $$=$$ $$($$$$-164 \nu^{10} + 1481 \nu^{8} - 7214 \nu^{6} + 17007 \nu^{4} - 16197 \nu^{2} - 3438$$$$)/12897$$ $$\beta_{4}$$ $$=$$ $$($$$$-175 \nu^{10} + 925 \nu^{8} - 3661 \nu^{6} - 1224 \nu^{4} + 16296 \nu^{2} - 30249$$$$)/12897$$ $$\beta_{5}$$ $$=$$ $$($$$$148 \nu^{10} - 987 \nu^{8} + 5217 \nu^{6} - 10175 \nu^{4} + 17343 \nu^{2} - 777$$$$)/4299$$ $$\beta_{6}$$ $$=$$ $$($$$$70 \nu^{11} - 370 \nu^{9} + 1751 \nu^{7} - 1230 \nu^{5} + 360 \nu^{3} + 8947 \nu$$$$)/1433$$ $$\beta_{7}$$ $$=$$ $$($$$$-730 \nu^{11} + 5701 \nu^{9} - 30748 \nu^{7} + 76698 \nu^{5} - 122898 \nu^{3} + 66168 \nu$$$$)/12897$$ $$\beta_{8}$$ $$=$$ $$($$$$-877 \nu^{10} + 6478 \nu^{8} - 34855 \nu^{6} + 79281 \nu^{4} - 123654 \nu^{2} + 31473$$$$)/12897$$ $$\beta_{9}$$ $$=$$ $$($$$$543 \nu^{11} - 3689 \nu^{9} + 19499 \nu^{7} - 39839 \nu^{5} + 64821 \nu^{3} - 18972 \nu$$$$)/4299$$ $$\beta_{10}$$ $$=$$ $$($$$$2237 \nu^{11} - 15509 \nu^{9} + 81362 \nu^{7} - 167049 \nu^{5} + 249792 \nu^{3} - 42912 \nu$$$$)/12897$$ $$\beta_{11}$$ $$=$$ $$($$$$-890 \nu^{11} + 6342 \nu^{9} - 33522 \nu^{7} + 71935 \nu^{5} - 111438 \nu^{3} + 32616 \nu$$$$)/4299$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$-\beta_{10} - 2 \beta_{7} + \beta_{6} - \beta_{2}$$$$)/3$$ $$\nu^{2}$$ $$=$$ $$\beta_{8} + 2 \beta_{5} + \beta_{4} - \beta_{3}$$ $$\nu^{3}$$ $$=$$ $$($$$$-4 \beta_{11} - 8 \beta_{10} + \beta_{9} - 4 \beta_{7} + 4 \beta_{6} - \beta_{2}$$$$)/3$$ $$\nu^{4}$$ $$=$$ $$4 \beta_{8} + 6 \beta_{5} - 6 \beta_{3} + 5 \beta_{1} - 12$$ $$\nu^{5}$$ $$=$$ $$($$$$-19 \beta_{11} - 16 \beta_{10} - 2 \beta_{9} + 16 \beta_{7}$$$$)/3$$ $$\nu^{6}$$ $$=$$ $$-7 \beta_{5} - 16 \beta_{4} - 7 \beta_{3} + 30 \beta_{1} - 51$$ $$\nu^{7}$$ $$=$$ $$($$$$67 \beta_{10} + 134 \beta_{7} - 88 \beta_{6} - 23 \beta_{2}$$$$)/3$$ $$\nu^{8}$$ $$=$$ $$-67 \beta_{8} - 118 \beta_{5} - 67 \beta_{4} + 104 \beta_{3} + 37 \beta_{1}$$ $$\nu^{9}$$ $$=$$ $$($$$$400 \beta_{11} + 578 \beta_{10} + 134 \beta_{9} + 289 \beta_{7} - 400 \beta_{6} - 134 \beta_{2}$$$$)/3$$ $$\nu^{10}$$ $$=$$ $$-289 \beta_{8} - 333 \beta_{5} + 645 \beta_{3} - 467 \beta_{1} + 978$$ $$\nu^{11}$$ $$=$$ $$($$$$1801 \beta_{11} + 1267 \beta_{10} + 668 \beta_{9} - 1267 \beta_{7}$$$$)/3$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1135$$ $$2593$$ $$\chi(n)$$ $$1$$ $$1 - \beta_{5}$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
881.1
 1.82904 + 1.05600i −0.474636 − 0.274031i 1.29589 + 0.748185i −1.29589 − 0.748185i 0.474636 + 0.274031i −1.82904 − 1.05600i 1.82904 − 1.05600i −0.474636 + 0.274031i 1.29589 − 0.748185i −1.29589 + 0.748185i 0.474636 − 0.274031i −1.82904 + 1.05600i
0 0 0 −1.41899 + 2.45776i 0 2.07253 + 1.64457i 0 0 0
881.2 0 0 0 −1.10552 + 1.91482i 0 0.906161 2.48573i 0 0 0
881.3 0 0 0 −0.717144 + 1.24213i 0 −2.16235 + 1.52455i 0 0 0
881.4 0 0 0 0.717144 1.24213i 0 2.40147 1.11037i 0 0 0
881.5 0 0 0 1.10552 1.91482i 0 −2.60579 0.458109i 0 0 0
881.6 0 0 0 1.41899 2.45776i 0 0.387972 + 2.61715i 0 0 0
2897.1 0 0 0 −1.41899 2.45776i 0 2.07253 1.64457i 0 0 0
2897.2 0 0 0 −1.10552 1.91482i 0 0.906161 + 2.48573i 0 0 0
2897.3 0 0 0 −0.717144 1.24213i 0 −2.16235 1.52455i 0 0 0
2897.4 0 0 0 0.717144 + 1.24213i 0 2.40147 + 1.11037i 0 0 0
2897.5 0 0 0 1.10552 + 1.91482i 0 −2.60579 + 0.458109i 0 0 0
2897.6 0 0 0 1.41899 + 2.45776i 0 0.387972 2.61715i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2897.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
9.d odd 6 1 inner
63.o even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.cc.a 12
3.b odd 2 1 1008.2.cc.a 12
4.b odd 2 1 189.2.o.a 12
7.b odd 2 1 inner 3024.2.cc.a 12
9.c even 3 1 1008.2.cc.a 12
9.d odd 6 1 inner 3024.2.cc.a 12
12.b even 2 1 63.2.o.a 12
21.c even 2 1 1008.2.cc.a 12
28.d even 2 1 189.2.o.a 12
28.f even 6 1 1323.2.i.c 12
28.f even 6 1 1323.2.s.c 12
28.g odd 6 1 1323.2.i.c 12
28.g odd 6 1 1323.2.s.c 12
36.f odd 6 1 63.2.o.a 12
36.f odd 6 1 567.2.c.c 12
36.h even 6 1 189.2.o.a 12
36.h even 6 1 567.2.c.c 12
63.l odd 6 1 1008.2.cc.a 12
63.o even 6 1 inner 3024.2.cc.a 12
84.h odd 2 1 63.2.o.a 12
84.j odd 6 1 441.2.i.c 12
84.j odd 6 1 441.2.s.c 12
84.n even 6 1 441.2.i.c 12
84.n even 6 1 441.2.s.c 12
252.n even 6 1 441.2.i.c 12
252.o even 6 1 1323.2.i.c 12
252.r odd 6 1 1323.2.s.c 12
252.s odd 6 1 189.2.o.a 12
252.s odd 6 1 567.2.c.c 12
252.u odd 6 1 441.2.s.c 12
252.bb even 6 1 1323.2.s.c 12
252.bi even 6 1 63.2.o.a 12
252.bi even 6 1 567.2.c.c 12
252.bj even 6 1 441.2.s.c 12
252.bl odd 6 1 441.2.i.c 12
252.bn odd 6 1 1323.2.i.c 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.o.a 12 12.b even 2 1
63.2.o.a 12 36.f odd 6 1
63.2.o.a 12 84.h odd 2 1
63.2.o.a 12 252.bi even 6 1
189.2.o.a 12 4.b odd 2 1
189.2.o.a 12 28.d even 2 1
189.2.o.a 12 36.h even 6 1
189.2.o.a 12 252.s odd 6 1
441.2.i.c 12 84.j odd 6 1
441.2.i.c 12 84.n even 6 1
441.2.i.c 12 252.n even 6 1
441.2.i.c 12 252.bl odd 6 1
441.2.s.c 12 84.j odd 6 1
441.2.s.c 12 84.n even 6 1
441.2.s.c 12 252.u odd 6 1
441.2.s.c 12 252.bj even 6 1
567.2.c.c 12 36.f odd 6 1
567.2.c.c 12 36.h even 6 1
567.2.c.c 12 252.s odd 6 1
567.2.c.c 12 252.bi even 6 1
1008.2.cc.a 12 3.b odd 2 1
1008.2.cc.a 12 9.c even 3 1
1008.2.cc.a 12 21.c even 2 1
1008.2.cc.a 12 63.l odd 6 1
1323.2.i.c 12 28.f even 6 1
1323.2.i.c 12 28.g odd 6 1
1323.2.i.c 12 252.o even 6 1
1323.2.i.c 12 252.bn odd 6 1
1323.2.s.c 12 28.f even 6 1
1323.2.s.c 12 28.g odd 6 1
1323.2.s.c 12 252.r odd 6 1
1323.2.s.c 12 252.bb even 6 1
3024.2.cc.a 12 1.a even 1 1 trivial
3024.2.cc.a 12 7.b odd 2 1 inner
3024.2.cc.a 12 9.d odd 6 1 inner
3024.2.cc.a 12 63.o even 6 1 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{12} + 15 T_{5}^{10} + 159 T_{5}^{8} + 828 T_{5}^{6} + 3141 T_{5}^{4} + 5346 T_{5}^{2} + 6561$$ acting on $$S_{2}^{\mathrm{new}}(3024, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 - 15 T^{2} + 84 T^{4} - 457 T^{6} + 3921 T^{8} - 20514 T^{10} + 80841 T^{12} - 512850 T^{14} + 2450625 T^{16} - 7140625 T^{18} + 32812500 T^{20} - 146484375 T^{22} + 244140625 T^{24}$$
$7$ $$1 - 2 T - T^{2} + 30 T^{3} - 50 T^{4} - 58 T^{5} + 715 T^{6} - 406 T^{7} - 2450 T^{8} + 10290 T^{9} - 2401 T^{10} - 33614 T^{11} + 117649 T^{12}$$
$11$ $$( 1 + 22 T^{2} + 242 T^{4} + 66 T^{5} + 2665 T^{6} + 726 T^{7} + 29282 T^{8} + 322102 T^{10} + 1771561 T^{12} )^{2}$$
$13$ $$1 + 33 T^{2} + 351 T^{4} + 2144 T^{6} + 53457 T^{8} + 906351 T^{10} + 9826878 T^{12} + 153173319 T^{14} + 1526785377 T^{16} + 10348678496 T^{18} + 286321483071 T^{20} + 4549330231017 T^{22} + 23298085122481 T^{24}$$
$17$ $$( 1 + 48 T^{2} + 1338 T^{4} + 26845 T^{6} + 386682 T^{8} + 4009008 T^{10} + 24137569 T^{12} )^{2}$$
$19$ $$( 1 - 51 T^{2} + 1599 T^{4} - 35471 T^{6} + 577239 T^{8} - 6646371 T^{10} + 47045881 T^{12} )^{2}$$
$23$ $$( 1 - 12 T + 130 T^{2} - 984 T^{3} + 7082 T^{4} - 39654 T^{5} + 209833 T^{6} - 912042 T^{7} + 3746378 T^{8} - 11972328 T^{9} + 36379330 T^{10} - 77236116 T^{11} + 148035889 T^{12} )^{2}$$
$29$ $$( 1 + 15 T + 184 T^{2} + 1635 T^{3} + 13205 T^{4} + 85158 T^{5} + 500899 T^{6} + 2469582 T^{7} + 11105405 T^{8} + 39876015 T^{9} + 130139704 T^{10} + 307667235 T^{11} + 594823321 T^{12} )^{2}$$
$31$ $$1 + 57 T^{2} + 3216 T^{4} + 97787 T^{6} + 2702697 T^{8} + 47442966 T^{10} + 1072931313 T^{12} + 45592690326 T^{14} + 2495997436137 T^{16} + 86786322453947 T^{18} + 2742897576410256 T^{20} + 46718812357905657 T^{22} + 787662783788549761 T^{24}$$
$37$ $$( 1 + T + 107 T^{2} + 73 T^{3} + 3959 T^{4} + 1369 T^{5} + 50653 T^{6} )^{4}$$
$41$ $$1 - 174 T^{2} + 15930 T^{4} - 1039210 T^{6} + 54933612 T^{8} - 2550462528 T^{10} + 108692576859 T^{12} - 4287327509568 T^{14} + 155229258378732 T^{16} - 4936355828289610 T^{18} + 127199858899897530 T^{20} - 2335542719966517774 T^{22} + 22563490300366186081 T^{24}$$
$43$ $$( 1 - 5 T - 58 T^{2} + 51 T^{3} + 2155 T^{4} + 7106 T^{5} - 129149 T^{6} + 305558 T^{7} + 3984595 T^{8} + 4054857 T^{9} - 198290458 T^{10} - 735042215 T^{11} + 6321363049 T^{12} )^{2}$$
$47$ $$1 - 189 T^{2} + 18726 T^{4} - 1271869 T^{6} + 67940493 T^{8} - 3218131254 T^{10} + 150306249081 T^{12} - 7108851940086 T^{14} + 331527932822733 T^{16} - 13709749821279901 T^{18} + 445890154028136486 T^{20} - 9941235992571879261 T^{22} +$$$$11\!\cdots\!41$$$$T^{24}$$
$53$ $$( 1 - 200 T^{2} + 20924 T^{4} - 1371431 T^{6} + 58775516 T^{8} - 1578096200 T^{10} + 22164361129 T^{12} )^{2}$$
$59$ $$1 - 135 T^{2} + 4578 T^{4} + 47801 T^{6} + 11150547 T^{8} - 1706849076 T^{10} + 108381578457 T^{12} - 5941541633556 T^{14} + 135115203346467 T^{16} + 2016271688573441 T^{18} + 672189743352581538 T^{20} - 69000761695586589135 T^{22} +$$$$17\!\cdots\!81$$$$T^{24}$$
$61$ $$1 + 342 T^{2} + 66840 T^{4} + 9095042 T^{6} + 949804386 T^{8} + 78844563978 T^{10} + 5324903072391 T^{12} + 293380622562138 T^{14} + 13150840509658626 T^{16} + 468579968669018162 T^{18} + 12813716800738262040 T^{20} +$$$$24\!\cdots\!42$$$$T^{22} +$$$$26\!\cdots\!21$$$$T^{24}$$
$67$ $$( 1 + 6 T - 150 T^{2} - 506 T^{3} + 17268 T^{4} + 28236 T^{5} - 1220289 T^{6} + 1891812 T^{7} + 77516052 T^{8} - 152186078 T^{9} - 3022668150 T^{10} + 8100750642 T^{11} + 90458382169 T^{12} )^{2}$$
$71$ $$( 1 - 263 T^{2} + 31517 T^{4} - 2539307 T^{6} + 158877197 T^{8} - 6683272103 T^{10} + 128100283921 T^{12} )^{2}$$
$73$ $$( 1 - 159 T^{2} + 10563 T^{4} - 623423 T^{6} + 56290227 T^{8} - 4515320319 T^{10} + 151334226289 T^{12} )^{2}$$
$79$ $$( 1 - 3 T - 204 T^{2} + 151 T^{3} + 27357 T^{4} - 1896 T^{5} - 2498217 T^{6} - 149784 T^{7} + 170735037 T^{8} + 74448889 T^{9} - 7945816524 T^{10} - 9231169197 T^{11} + 243087455521 T^{12} )^{2}$$
$83$ $$1 - 264 T^{2} + 27306 T^{4} - 2832334 T^{6} + 401548758 T^{8} - 35501027934 T^{10} + 2433955301391 T^{12} - 244566581437326 T^{14} + 19056829854315318 T^{16} - 926004335465713246 T^{18} + 61501091690788653546 T^{20} -$$$$40\!\cdots\!36$$$$T^{22} +$$$$10\!\cdots\!61$$$$T^{24}$$
$89$ $$( 1 + 210 T^{2} + 31902 T^{4} + 3230233 T^{6} + 252695742 T^{8} + 13175870610 T^{10} + 496981290961 T^{12} )^{2}$$
$97$ $$1 + 513 T^{2} + 147894 T^{4} + 30072485 T^{6} + 4748892315 T^{8} + 607745530428 T^{10} + 64510991774769 T^{12} + 5718277695797052 T^{14} + 420416022193375515 T^{16} + 25049538123647278565 T^{18} +$$$$11\!\cdots\!34$$$$T^{20} +$$$$37\!\cdots\!37$$$$T^{22} +$$$$69\!\cdots\!41$$$$T^{24}$$