Properties

Label 3024.2.bb
Level 3024
Weight 2
Character orbit bb
Rep. character \(\chi_{3024}(1133,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 512
Sturm bound 1152

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3024.bb (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 336 \)
Character field: \(\Q(i)\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3024, [\chi])\).

Total New Old
Modular forms 1176 512 664
Cusp forms 1128 512 616
Eisenstein series 48 0 48

Trace form

\( 512q + O(q^{10}) \) \( 512q - 32q^{16} + 24q^{22} - 12q^{28} - 48q^{64} - 64q^{67} + 96q^{70} + 32q^{88} + 24q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database