Properties

Label 3024.2.b.f
Level $3024$
Weight $2$
Character orbit 3024.b
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1567,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1567"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-14,0,0,0,0,0,10,0,0,0, 0,0,8,0,0,0,0,0,-22,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(47)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + 3\sqrt{-3})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{7} + ( - 2 \beta + 1) q^{13} - 7 q^{19} + 5 q^{25} + 4 q^{31} - 11 q^{37} + ( - 4 \beta + 2) q^{43} + ( - \beta - 6) q^{49} + ( - 6 \beta + 3) q^{61} + (6 \beta - 3) q^{67} + ( - 6 \beta + 3) q^{73}+ \cdots + ( - 2 \beta + 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{7} - 14 q^{19} + 10 q^{25} + 8 q^{31} - 22 q^{37} - 13 q^{49} + 27 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1567.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 −0.500000 2.59808i 0 0 0
1567.2 0 0 0 0 0 −0.500000 + 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
28.d even 2 1 inner
84.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.b.f 2
3.b odd 2 1 CM 3024.2.b.f 2
4.b odd 2 1 3024.2.b.k yes 2
7.b odd 2 1 3024.2.b.k yes 2
12.b even 2 1 3024.2.b.k yes 2
21.c even 2 1 3024.2.b.k yes 2
28.d even 2 1 inner 3024.2.b.f 2
84.h odd 2 1 inner 3024.2.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3024.2.b.f 2 1.a even 1 1 trivial
3024.2.b.f 2 3.b odd 2 1 CM
3024.2.b.f 2 28.d even 2 1 inner
3024.2.b.f 2 84.h odd 2 1 inner
3024.2.b.k yes 2 4.b odd 2 1
3024.2.b.k yes 2 7.b odd 2 1
3024.2.b.k yes 2 12.b even 2 1
3024.2.b.k yes 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 27 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19} + 7 \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display
\( T_{47} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 27 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 11)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 108 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 243 \) Copy content Toggle raw display
$67$ \( T^{2} + 243 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 243 \) Copy content Toggle raw display
$79$ \( T^{2} + 27 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 27 \) Copy content Toggle raw display
show more
show less