Defining parameters
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.o (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 84 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3024, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 8 | 78 |
Cusp forms | 50 | 8 | 42 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
3024.1.o.a | \(2\) | \(1.509\) | \(\Q(\sqrt{3}) \) | \(D_{6}\) | \(\Q(\sqrt{-21}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta q^{5}-q^{7}-\beta q^{11}+q^{19}+\beta q^{23}+\cdots\) |
3024.1.o.b | \(2\) | \(1.509\) | \(\Q(\sqrt{-3}) \) | \(D_{6}\) | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-1\) | \(q+\zeta_{6}^{2}q^{7}+(\zeta_{6}+\zeta_{6}^{2})q^{13}-q^{19}+\cdots\) |
3024.1.o.c | \(2\) | \(1.509\) | \(\Q(\sqrt{-3}) \) | \(D_{6}\) | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(1\) | \(q-\zeta_{6}^{2}q^{7}+(\zeta_{6}+\zeta_{6}^{2})q^{13}+q^{19}+\cdots\) |
3024.1.o.d | \(2\) | \(1.509\) | \(\Q(\sqrt{3}) \) | \(D_{6}\) | \(\Q(\sqrt{-21}) \) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q-\beta q^{5}+q^{7}+\beta q^{11}-q^{19}-\beta q^{23}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 3}\)