Defining parameters
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.bw (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 252 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3024, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 4 | 80 |
Cusp forms | 12 | 4 | 8 |
Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 4 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
3024.1.bw.a | \(4\) | \(1.509\) | \(\Q(\zeta_{12})\) | \(A_{4}\) | None | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\zeta_{12}^{2}q^{5}-\zeta_{12}^{3}q^{7}+\zeta_{12}q^{11}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)