Properties

Label 3024.1.bk
Level $3024$
Weight $1$
Character orbit 3024.bk
Rep. character $\chi_{3024}(1727,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $4$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3024.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(576\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3024, [\chi])\).

Total New Old
Modular forms 92 8 84
Cusp forms 20 8 12
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8q + O(q^{10}) \) \( 8q + 4q^{25} + 2q^{37} + 2q^{49} + 6q^{73} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3024, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3024.1.bk.a \(2\) \(1.509\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(-2\) \(q-q^{7}+(-\zeta_{6}-\zeta_{6}^{2})q^{13}+\zeta_{6}q^{19}+\cdots\)
3024.1.bk.b \(2\) \(1.509\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(-1\) \(q+\zeta_{6}^{2}q^{7}+\zeta_{6}q^{19}-\zeta_{6}^{2}q^{25}+\zeta_{6}^{2}q^{31}+\cdots\)
3024.1.bk.c \(2\) \(1.509\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(1\) \(q-\zeta_{6}^{2}q^{7}-\zeta_{6}q^{19}-\zeta_{6}^{2}q^{25}-\zeta_{6}^{2}q^{31}+\cdots\)
3024.1.bk.d \(2\) \(1.509\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(2\) \(q+q^{7}+(-\zeta_{6}-\zeta_{6}^{2})q^{13}-\zeta_{6}q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3024, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3024, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)