Defining parameters
Level: | \( N \) | \(=\) | \( 3013 = 23 \cdot 131 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3013.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(528\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3013))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 266 | 237 | 29 |
Cusp forms | 263 | 237 | 26 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(23\) | \(131\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(61\) | \(60\) | \(1\) | \(61\) | \(60\) | \(1\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(-\) | \(-\) | \(69\) | \(58\) | \(11\) | \(68\) | \(58\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(72\) | \(68\) | \(4\) | \(71\) | \(68\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(64\) | \(51\) | \(13\) | \(63\) | \(51\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(125\) | \(111\) | \(14\) | \(124\) | \(111\) | \(13\) | \(1\) | \(0\) | \(1\) | ||||
Minus space | \(-\) | \(141\) | \(126\) | \(15\) | \(139\) | \(126\) | \(13\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3013))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 23 | 131 | |||||||
3013.2.a.a | $51$ | $24.059$ | None | \(-14\) | \(-20\) | \(-7\) | \(-5\) | $-$ | $-$ | |||
3013.2.a.b | $58$ | $24.059$ | None | \(13\) | \(16\) | \(9\) | \(7\) | $+$ | $-$ | |||
3013.2.a.c | $60$ | $24.059$ | None | \(-12\) | \(-18\) | \(-13\) | \(-13\) | $+$ | $+$ | |||
3013.2.a.d | $68$ | $24.059$ | None | \(14\) | \(22\) | \(9\) | \(7\) | $-$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3013))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3013)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(131))\)\(^{\oplus 2}\)