Newspace parameters
Level: | \( N \) | \(=\) | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 300.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(122.213583018\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-110}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 110 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2\cdot 3 \) |
Twist minimal: | no (minimal twist has level 12) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{-110}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(151\) | \(277\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
0 | 51.0000 | − | 62.9285i | 0 | 0 | 0 | 3094.00 | 0 | −1359.00 | − | 6418.71i | 0 | ||||||||||||||||||||
101.2 | 0 | 51.0000 | + | 62.9285i | 0 | 0 | 0 | 3094.00 | 0 | −1359.00 | + | 6418.71i | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 300.9.g.d | 2 | |
3.b | odd | 2 | 1 | inner | 300.9.g.d | 2 | |
5.b | even | 2 | 1 | 12.9.c.b | ✓ | 2 | |
5.c | odd | 4 | 2 | 300.9.b.c | 4 | ||
15.d | odd | 2 | 1 | 12.9.c.b | ✓ | 2 | |
15.e | even | 4 | 2 | 300.9.b.c | 4 | ||
20.d | odd | 2 | 1 | 48.9.e.c | 2 | ||
40.e | odd | 2 | 1 | 192.9.e.d | 2 | ||
40.f | even | 2 | 1 | 192.9.e.g | 2 | ||
45.h | odd | 6 | 2 | 324.9.g.f | 4 | ||
45.j | even | 6 | 2 | 324.9.g.f | 4 | ||
60.h | even | 2 | 1 | 48.9.e.c | 2 | ||
120.i | odd | 2 | 1 | 192.9.e.g | 2 | ||
120.m | even | 2 | 1 | 192.9.e.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
12.9.c.b | ✓ | 2 | 5.b | even | 2 | 1 | |
12.9.c.b | ✓ | 2 | 15.d | odd | 2 | 1 | |
48.9.e.c | 2 | 20.d | odd | 2 | 1 | ||
48.9.e.c | 2 | 60.h | even | 2 | 1 | ||
192.9.e.d | 2 | 40.e | odd | 2 | 1 | ||
192.9.e.d | 2 | 120.m | even | 2 | 1 | ||
192.9.e.g | 2 | 40.f | even | 2 | 1 | ||
192.9.e.g | 2 | 120.i | odd | 2 | 1 | ||
300.9.b.c | 4 | 5.c | odd | 4 | 2 | ||
300.9.b.c | 4 | 15.e | even | 4 | 2 | ||
300.9.g.d | 2 | 1.a | even | 1 | 1 | trivial | |
300.9.g.d | 2 | 3.b | odd | 2 | 1 | inner | |
324.9.g.f | 4 | 45.h | odd | 6 | 2 | ||
324.9.g.f | 4 | 45.j | even | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7} - 3094 \)
acting on \(S_{9}^{\mathrm{new}}(300, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} - 102T + 6561 \)
$5$
\( T^{2} \)
$7$
\( (T - 3094)^{2} \)
$11$
\( T^{2} + 1283040 \)
$13$
\( (T - 7294)^{2} \)
$17$
\( T^{2} + 3469340160 \)
$19$
\( (T + 80326)^{2} \)
$23$
\( T^{2} + 9489363840 \)
$29$
\( T^{2} + 746946113760 \)
$31$
\( (T - 435914)^{2} \)
$37$
\( (T + 1159298)^{2} \)
$41$
\( T^{2} + 7377998348160 \)
$43$
\( (T + 990266)^{2} \)
$47$
\( T^{2} + 44905188810240 \)
$53$
\( T^{2} + \cdots + 101424159318240 \)
$59$
\( T^{2} + 2554431279840 \)
$61$
\( (T - 19369154)^{2} \)
$67$
\( (T - 28024294)^{2} \)
$71$
\( T^{2} + 11\!\cdots\!40 \)
$73$
\( (T - 25230142)^{2} \)
$79$
\( (T + 63401398)^{2} \)
$83$
\( T^{2} + 22\!\cdots\!60 \)
$89$
\( T^{2} + 61\!\cdots\!60 \)
$97$
\( (T + 19550306)^{2} \)
show more
show less