Properties

Label 300.5.g.b
Level 300
Weight 5
Character orbit 300.g
Self dual yes
Analytic conductor 31.011
Analytic rank 0
Dimension 1
CM discriminant -3
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 300.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(31.0109889252\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q - 9q^{3} + 94q^{7} + 81q^{9} + O(q^{10}) \) \( q - 9q^{3} + 94q^{7} + 81q^{9} - 146q^{13} - 46q^{19} - 846q^{21} - 729q^{27} + 194q^{31} + 2062q^{37} + 1314q^{39} + 3214q^{43} + 6435q^{49} + 414q^{57} - 1966q^{61} + 7614q^{63} - 5906q^{67} + 8542q^{73} + 7682q^{79} + 6561q^{81} - 13724q^{91} - 1746q^{93} + 18814q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
0
0 −9.00000 0 0 0 94.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.5.g.b 1
3.b odd 2 1 CM 300.5.g.b 1
5.b even 2 1 12.5.c.a 1
5.c odd 4 2 300.5.b.a 2
15.d odd 2 1 12.5.c.a 1
15.e even 4 2 300.5.b.a 2
20.d odd 2 1 48.5.e.a 1
35.c odd 2 1 588.5.c.a 1
40.e odd 2 1 192.5.e.b 1
40.f even 2 1 192.5.e.a 1
45.h odd 6 2 324.5.g.b 2
45.j even 6 2 324.5.g.b 2
60.h even 2 1 48.5.e.a 1
105.g even 2 1 588.5.c.a 1
120.i odd 2 1 192.5.e.a 1
120.m even 2 1 192.5.e.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.5.c.a 1 5.b even 2 1
12.5.c.a 1 15.d odd 2 1
48.5.e.a 1 20.d odd 2 1
48.5.e.a 1 60.h even 2 1
192.5.e.a 1 40.f even 2 1
192.5.e.a 1 120.i odd 2 1
192.5.e.b 1 40.e odd 2 1
192.5.e.b 1 120.m even 2 1
300.5.b.a 2 5.c odd 4 2
300.5.b.a 2 15.e even 4 2
300.5.g.b 1 1.a even 1 1 trivial
300.5.g.b 1 3.b odd 2 1 CM
324.5.g.b 2 45.h odd 6 2
324.5.g.b 2 45.j even 6 2
588.5.c.a 1 35.c odd 2 1
588.5.c.a 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 94 \) acting on \(S_{5}^{\mathrm{new}}(300, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 9 T \)
$5$ 1
$7$ \( 1 - 94 T + 2401 T^{2} \)
$11$ \( ( 1 - 121 T )( 1 + 121 T ) \)
$13$ \( 1 + 146 T + 28561 T^{2} \)
$17$ \( ( 1 - 289 T )( 1 + 289 T ) \)
$19$ \( 1 + 46 T + 130321 T^{2} \)
$23$ \( ( 1 - 529 T )( 1 + 529 T ) \)
$29$ \( ( 1 - 841 T )( 1 + 841 T ) \)
$31$ \( 1 - 194 T + 923521 T^{2} \)
$37$ \( 1 - 2062 T + 1874161 T^{2} \)
$41$ \( ( 1 - 1681 T )( 1 + 1681 T ) \)
$43$ \( 1 - 3214 T + 3418801 T^{2} \)
$47$ \( ( 1 - 2209 T )( 1 + 2209 T ) \)
$53$ \( ( 1 - 2809 T )( 1 + 2809 T ) \)
$59$ \( ( 1 - 3481 T )( 1 + 3481 T ) \)
$61$ \( 1 + 1966 T + 13845841 T^{2} \)
$67$ \( 1 + 5906 T + 20151121 T^{2} \)
$71$ \( ( 1 - 5041 T )( 1 + 5041 T ) \)
$73$ \( 1 - 8542 T + 28398241 T^{2} \)
$79$ \( 1 - 7682 T + 38950081 T^{2} \)
$83$ \( ( 1 - 6889 T )( 1 + 6889 T ) \)
$89$ \( ( 1 - 7921 T )( 1 + 7921 T ) \)
$97$ \( 1 - 18814 T + 88529281 T^{2} \)
show more
show less