Newspace parameters
Level: | \( N \) | \(=\) | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 300.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.7005730017\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 60) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(151\) | \(277\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | − | 3.00000i | 0 | 0 | 0 | − | 32.0000i | 0 | −9.00000 | 0 | ||||||||||||||||||||||
49.2 | 0 | 3.00000i | 0 | 0 | 0 | 32.0000i | 0 | −9.00000 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 300.4.d.d | 2 | |
3.b | odd | 2 | 1 | 900.4.d.b | 2 | ||
4.b | odd | 2 | 1 | 1200.4.f.e | 2 | ||
5.b | even | 2 | 1 | inner | 300.4.d.d | 2 | |
5.c | odd | 4 | 1 | 60.4.a.b | ✓ | 1 | |
5.c | odd | 4 | 1 | 300.4.a.e | 1 | ||
15.d | odd | 2 | 1 | 900.4.d.b | 2 | ||
15.e | even | 4 | 1 | 180.4.a.c | 1 | ||
15.e | even | 4 | 1 | 900.4.a.b | 1 | ||
20.d | odd | 2 | 1 | 1200.4.f.e | 2 | ||
20.e | even | 4 | 1 | 240.4.a.j | 1 | ||
20.e | even | 4 | 1 | 1200.4.a.s | 1 | ||
40.i | odd | 4 | 1 | 960.4.a.bb | 1 | ||
40.k | even | 4 | 1 | 960.4.a.a | 1 | ||
45.k | odd | 12 | 2 | 1620.4.i.a | 2 | ||
45.l | even | 12 | 2 | 1620.4.i.g | 2 | ||
60.l | odd | 4 | 1 | 720.4.a.c | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
60.4.a.b | ✓ | 1 | 5.c | odd | 4 | 1 | |
180.4.a.c | 1 | 15.e | even | 4 | 1 | ||
240.4.a.j | 1 | 20.e | even | 4 | 1 | ||
300.4.a.e | 1 | 5.c | odd | 4 | 1 | ||
300.4.d.d | 2 | 1.a | even | 1 | 1 | trivial | |
300.4.d.d | 2 | 5.b | even | 2 | 1 | inner | |
720.4.a.c | 1 | 60.l | odd | 4 | 1 | ||
900.4.a.b | 1 | 15.e | even | 4 | 1 | ||
900.4.d.b | 2 | 3.b | odd | 2 | 1 | ||
900.4.d.b | 2 | 15.d | odd | 2 | 1 | ||
960.4.a.a | 1 | 40.k | even | 4 | 1 | ||
960.4.a.bb | 1 | 40.i | odd | 4 | 1 | ||
1200.4.a.s | 1 | 20.e | even | 4 | 1 | ||
1200.4.f.e | 2 | 4.b | odd | 2 | 1 | ||
1200.4.f.e | 2 | 20.d | odd | 2 | 1 | ||
1620.4.i.a | 2 | 45.k | odd | 12 | 2 | ||
1620.4.i.g | 2 | 45.l | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{2} + 1024 \)
acting on \(S_{4}^{\mathrm{new}}(300, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 9 \)
$5$
\( T^{2} \)
$7$
\( T^{2} + 1024 \)
$11$
\( (T - 36)^{2} \)
$13$
\( T^{2} + 100 \)
$17$
\( T^{2} + 6084 \)
$19$
\( (T + 140)^{2} \)
$23$
\( T^{2} + 36864 \)
$29$
\( (T + 6)^{2} \)
$31$
\( (T + 16)^{2} \)
$37$
\( T^{2} + 1156 \)
$41$
\( (T + 390)^{2} \)
$43$
\( T^{2} + 2704 \)
$47$
\( T^{2} + 166464 \)
$53$
\( T^{2} + 12996 \)
$59$
\( (T + 516)^{2} \)
$61$
\( (T + 58)^{2} \)
$67$
\( T^{2} + 795664 \)
$71$
\( (T + 120)^{2} \)
$73$
\( T^{2} + 417316 \)
$79$
\( (T - 1168)^{2} \)
$83$
\( T^{2} + 535824 \)
$89$
\( (T - 1590)^{2} \)
$97$
\( T^{2} + 37636 \)
show more
show less