Properties

Label 300.4.d.b.49.1
Level $300$
Weight $4$
Character 300.49
Analytic conductor $17.701$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,4,Mod(49,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 300.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7005730017\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 300.49
Dual form 300.4.d.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +28.0000i q^{7} -9.00000 q^{9} -24.0000 q^{11} -70.0000i q^{13} -102.000i q^{17} -20.0000 q^{19} +84.0000 q^{21} -72.0000i q^{23} +27.0000i q^{27} -306.000 q^{29} -136.000 q^{31} +72.0000i q^{33} +214.000i q^{37} -210.000 q^{39} -150.000 q^{41} -292.000i q^{43} +72.0000i q^{47} -441.000 q^{49} -306.000 q^{51} -414.000i q^{53} +60.0000i q^{57} +744.000 q^{59} -418.000 q^{61} -252.000i q^{63} -188.000i q^{67} -216.000 q^{69} +480.000 q^{71} +434.000i q^{73} -672.000i q^{77} -1352.00 q^{79} +81.0000 q^{81} -612.000i q^{83} +918.000i q^{87} +30.0000 q^{89} +1960.00 q^{91} +408.000i q^{93} +286.000i q^{97} +216.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9} - 48 q^{11} - 40 q^{19} + 168 q^{21} - 612 q^{29} - 272 q^{31} - 420 q^{39} - 300 q^{41} - 882 q^{49} - 612 q^{51} + 1488 q^{59} - 836 q^{61} - 432 q^{69} + 960 q^{71} - 2704 q^{79} + 162 q^{81}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 28.0000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −24.0000 −0.657843 −0.328921 0.944357i \(-0.606685\pi\)
−0.328921 + 0.944357i \(0.606685\pi\)
\(12\) 0 0
\(13\) − 70.0000i − 1.49342i −0.665148 0.746712i \(-0.731631\pi\)
0.665148 0.746712i \(-0.268369\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 102.000i − 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) −20.0000 −0.241490 −0.120745 0.992684i \(-0.538528\pi\)
−0.120745 + 0.992684i \(0.538528\pi\)
\(20\) 0 0
\(21\) 84.0000 0.872872
\(22\) 0 0
\(23\) − 72.0000i − 0.652741i −0.945242 0.326370i \(-0.894174\pi\)
0.945242 0.326370i \(-0.105826\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −306.000 −1.95941 −0.979703 0.200455i \(-0.935758\pi\)
−0.979703 + 0.200455i \(0.935758\pi\)
\(30\) 0 0
\(31\) −136.000 −0.787946 −0.393973 0.919122i \(-0.628900\pi\)
−0.393973 + 0.919122i \(0.628900\pi\)
\(32\) 0 0
\(33\) 72.0000i 0.379806i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 214.000i 0.950848i 0.879757 + 0.475424i \(0.157705\pi\)
−0.879757 + 0.475424i \(0.842295\pi\)
\(38\) 0 0
\(39\) −210.000 −0.862229
\(40\) 0 0
\(41\) −150.000 −0.571367 −0.285684 0.958324i \(-0.592221\pi\)
−0.285684 + 0.958324i \(0.592221\pi\)
\(42\) 0 0
\(43\) − 292.000i − 1.03557i −0.855510 0.517786i \(-0.826756\pi\)
0.855510 0.517786i \(-0.173244\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 72.0000i 0.223453i 0.993739 + 0.111726i \(0.0356380\pi\)
−0.993739 + 0.111726i \(0.964362\pi\)
\(48\) 0 0
\(49\) −441.000 −1.28571
\(50\) 0 0
\(51\) −306.000 −0.840168
\(52\) 0 0
\(53\) − 414.000i − 1.07297i −0.843911 0.536484i \(-0.819752\pi\)
0.843911 0.536484i \(-0.180248\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 60.0000i 0.139424i
\(58\) 0 0
\(59\) 744.000 1.64170 0.820852 0.571141i \(-0.193499\pi\)
0.820852 + 0.571141i \(0.193499\pi\)
\(60\) 0 0
\(61\) −418.000 −0.877367 −0.438684 0.898642i \(-0.644555\pi\)
−0.438684 + 0.898642i \(0.644555\pi\)
\(62\) 0 0
\(63\) − 252.000i − 0.503953i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 188.000i − 0.342804i −0.985201 0.171402i \(-0.945170\pi\)
0.985201 0.171402i \(-0.0548297\pi\)
\(68\) 0 0
\(69\) −216.000 −0.376860
\(70\) 0 0
\(71\) 480.000 0.802331 0.401166 0.916006i \(-0.368605\pi\)
0.401166 + 0.916006i \(0.368605\pi\)
\(72\) 0 0
\(73\) 434.000i 0.695834i 0.937525 + 0.347917i \(0.113111\pi\)
−0.937525 + 0.347917i \(0.886889\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 672.000i − 0.994565i
\(78\) 0 0
\(79\) −1352.00 −1.92547 −0.962733 0.270452i \(-0.912827\pi\)
−0.962733 + 0.270452i \(0.912827\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 612.000i − 0.809346i −0.914461 0.404673i \(-0.867385\pi\)
0.914461 0.404673i \(-0.132615\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 918.000i 1.13126i
\(88\) 0 0
\(89\) 30.0000 0.0357303 0.0178651 0.999840i \(-0.494313\pi\)
0.0178651 + 0.999840i \(0.494313\pi\)
\(90\) 0 0
\(91\) 1960.00 2.25784
\(92\) 0 0
\(93\) 408.000i 0.454921i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 286.000i 0.299370i 0.988734 + 0.149685i \(0.0478260\pi\)
−0.988734 + 0.149685i \(0.952174\pi\)
\(98\) 0 0
\(99\) 216.000 0.219281
\(100\) 0 0
\(101\) −1542.00 −1.51916 −0.759578 0.650416i \(-0.774594\pi\)
−0.759578 + 0.650416i \(0.774594\pi\)
\(102\) 0 0
\(103\) 1172.00i 1.12117i 0.828097 + 0.560585i \(0.189424\pi\)
−0.828097 + 0.560585i \(0.810576\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1956.00i − 1.76723i −0.468214 0.883615i \(-0.655102\pi\)
0.468214 0.883615i \(-0.344898\pi\)
\(108\) 0 0
\(109\) 1858.00 1.63270 0.816349 0.577559i \(-0.195995\pi\)
0.816349 + 0.577559i \(0.195995\pi\)
\(110\) 0 0
\(111\) 642.000 0.548972
\(112\) 0 0
\(113\) 174.000i 0.144854i 0.997374 + 0.0724272i \(0.0230745\pi\)
−0.997374 + 0.0724272i \(0.976926\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 630.000i 0.497808i
\(118\) 0 0
\(119\) 2856.00 2.20008
\(120\) 0 0
\(121\) −755.000 −0.567243
\(122\) 0 0
\(123\) 450.000i 0.329879i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2068.00i 1.44492i 0.691411 + 0.722462i \(0.256990\pi\)
−0.691411 + 0.722462i \(0.743010\pi\)
\(128\) 0 0
\(129\) −876.000 −0.597888
\(130\) 0 0
\(131\) 312.000 0.208088 0.104044 0.994573i \(-0.466822\pi\)
0.104044 + 0.994573i \(0.466822\pi\)
\(132\) 0 0
\(133\) − 560.000i − 0.365099i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2646.00i − 1.65010i −0.565063 0.825048i \(-0.691148\pi\)
0.565063 0.825048i \(-0.308852\pi\)
\(138\) 0 0
\(139\) 1276.00 0.778625 0.389313 0.921106i \(-0.372713\pi\)
0.389313 + 0.921106i \(0.372713\pi\)
\(140\) 0 0
\(141\) 216.000 0.129011
\(142\) 0 0
\(143\) 1680.00i 0.982438i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1323.00i 0.742307i
\(148\) 0 0
\(149\) 3198.00 1.75832 0.879162 0.476522i \(-0.158103\pi\)
0.879162 + 0.476522i \(0.158103\pi\)
\(150\) 0 0
\(151\) −760.000 −0.409589 −0.204794 0.978805i \(-0.565653\pi\)
−0.204794 + 0.978805i \(0.565653\pi\)
\(152\) 0 0
\(153\) 918.000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 166.000i 0.0843837i 0.999110 + 0.0421919i \(0.0134341\pi\)
−0.999110 + 0.0421919i \(0.986566\pi\)
\(158\) 0 0
\(159\) −1242.00 −0.619478
\(160\) 0 0
\(161\) 2016.00 0.986851
\(162\) 0 0
\(163\) 3020.00i 1.45119i 0.688120 + 0.725597i \(0.258436\pi\)
−0.688120 + 0.725597i \(0.741564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 984.000i 0.455953i 0.973667 + 0.227977i \(0.0732110\pi\)
−0.973667 + 0.227977i \(0.926789\pi\)
\(168\) 0 0
\(169\) −2703.00 −1.23031
\(170\) 0 0
\(171\) 180.000 0.0804967
\(172\) 0 0
\(173\) 1962.00i 0.862243i 0.902294 + 0.431122i \(0.141882\pi\)
−0.902294 + 0.431122i \(0.858118\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2232.00i − 0.947838i
\(178\) 0 0
\(179\) −576.000 −0.240515 −0.120258 0.992743i \(-0.538372\pi\)
−0.120258 + 0.992743i \(0.538372\pi\)
\(180\) 0 0
\(181\) −1210.00 −0.496898 −0.248449 0.968645i \(-0.579921\pi\)
−0.248449 + 0.968645i \(0.579921\pi\)
\(182\) 0 0
\(183\) 1254.00i 0.506548i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2448.00i 0.957302i
\(188\) 0 0
\(189\) −756.000 −0.290957
\(190\) 0 0
\(191\) 3384.00 1.28198 0.640989 0.767550i \(-0.278525\pi\)
0.640989 + 0.767550i \(0.278525\pi\)
\(192\) 0 0
\(193\) − 2038.00i − 0.760096i −0.924967 0.380048i \(-0.875908\pi\)
0.924967 0.380048i \(-0.124092\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4098.00i − 1.48208i −0.671459 0.741042i \(-0.734332\pi\)
0.671459 0.741042i \(-0.265668\pi\)
\(198\) 0 0
\(199\) 2248.00 0.800786 0.400393 0.916343i \(-0.368874\pi\)
0.400393 + 0.916343i \(0.368874\pi\)
\(200\) 0 0
\(201\) −564.000 −0.197918
\(202\) 0 0
\(203\) − 8568.00i − 2.96234i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 648.000i 0.217580i
\(208\) 0 0
\(209\) 480.000 0.158863
\(210\) 0 0
\(211\) 3260.00 1.06364 0.531819 0.846858i \(-0.321509\pi\)
0.531819 + 0.846858i \(0.321509\pi\)
\(212\) 0 0
\(213\) − 1440.00i − 0.463226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 3808.00i − 1.19126i
\(218\) 0 0
\(219\) 1302.00 0.401740
\(220\) 0 0
\(221\) −7140.00 −2.17325
\(222\) 0 0
\(223\) − 2980.00i − 0.894868i −0.894317 0.447434i \(-0.852338\pi\)
0.894317 0.447434i \(-0.147662\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3180.00i 0.929797i 0.885364 + 0.464899i \(0.153909\pi\)
−0.885364 + 0.464899i \(0.846091\pi\)
\(228\) 0 0
\(229\) −3374.00 −0.973625 −0.486813 0.873506i \(-0.661841\pi\)
−0.486813 + 0.873506i \(0.661841\pi\)
\(230\) 0 0
\(231\) −2016.00 −0.574212
\(232\) 0 0
\(233\) 1950.00i 0.548278i 0.961690 + 0.274139i \(0.0883928\pi\)
−0.961690 + 0.274139i \(0.911607\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4056.00i 1.11167i
\(238\) 0 0
\(239\) −2232.00 −0.604084 −0.302042 0.953295i \(-0.597668\pi\)
−0.302042 + 0.953295i \(0.597668\pi\)
\(240\) 0 0
\(241\) −1822.00 −0.486993 −0.243497 0.969902i \(-0.578294\pi\)
−0.243497 + 0.969902i \(0.578294\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1400.00i 0.360647i
\(248\) 0 0
\(249\) −1836.00 −0.467276
\(250\) 0 0
\(251\) 1488.00 0.374190 0.187095 0.982342i \(-0.440093\pi\)
0.187095 + 0.982342i \(0.440093\pi\)
\(252\) 0 0
\(253\) 1728.00i 0.429401i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2994.00i 0.726695i 0.931654 + 0.363347i \(0.118366\pi\)
−0.931654 + 0.363347i \(0.881634\pi\)
\(258\) 0 0
\(259\) −5992.00 −1.43755
\(260\) 0 0
\(261\) 2754.00 0.653135
\(262\) 0 0
\(263\) − 2472.00i − 0.579582i −0.957090 0.289791i \(-0.906414\pi\)
0.957090 0.289791i \(-0.0935858\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 90.0000i − 0.0206289i
\(268\) 0 0
\(269\) −3954.00 −0.896207 −0.448103 0.893982i \(-0.647900\pi\)
−0.448103 + 0.893982i \(0.647900\pi\)
\(270\) 0 0
\(271\) −2176.00 −0.487759 −0.243879 0.969806i \(-0.578420\pi\)
−0.243879 + 0.969806i \(0.578420\pi\)
\(272\) 0 0
\(273\) − 5880.00i − 1.30357i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1034.00i − 0.224285i −0.993692 0.112143i \(-0.964229\pi\)
0.993692 0.112143i \(-0.0357714\pi\)
\(278\) 0 0
\(279\) 1224.00 0.262649
\(280\) 0 0
\(281\) −6654.00 −1.41261 −0.706307 0.707906i \(-0.749640\pi\)
−0.706307 + 0.707906i \(0.749640\pi\)
\(282\) 0 0
\(283\) − 1756.00i − 0.368846i −0.982847 0.184423i \(-0.940958\pi\)
0.982847 0.184423i \(-0.0590416\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4200.00i − 0.863826i
\(288\) 0 0
\(289\) −5491.00 −1.11765
\(290\) 0 0
\(291\) 858.000 0.172841
\(292\) 0 0
\(293\) 3234.00i 0.644820i 0.946600 + 0.322410i \(0.104493\pi\)
−0.946600 + 0.322410i \(0.895507\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 648.000i − 0.126602i
\(298\) 0 0
\(299\) −5040.00 −0.974818
\(300\) 0 0
\(301\) 8176.00 1.56564
\(302\) 0 0
\(303\) 4626.00i 0.877085i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2036.00i − 0.378504i −0.981929 0.189252i \(-0.939394\pi\)
0.981929 0.189252i \(-0.0606063\pi\)
\(308\) 0 0
\(309\) 3516.00 0.647308
\(310\) 0 0
\(311\) −96.0000 −0.0175037 −0.00875187 0.999962i \(-0.502786\pi\)
−0.00875187 + 0.999962i \(0.502786\pi\)
\(312\) 0 0
\(313\) 1202.00i 0.217064i 0.994093 + 0.108532i \(0.0346150\pi\)
−0.994093 + 0.108532i \(0.965385\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3798.00i 0.672924i 0.941697 + 0.336462i \(0.109230\pi\)
−0.941697 + 0.336462i \(0.890770\pi\)
\(318\) 0 0
\(319\) 7344.00 1.28898
\(320\) 0 0
\(321\) −5868.00 −1.02031
\(322\) 0 0
\(323\) 2040.00i 0.351420i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 5574.00i − 0.942639i
\(328\) 0 0
\(329\) −2016.00 −0.337829
\(330\) 0 0
\(331\) −5668.00 −0.941213 −0.470606 0.882343i \(-0.655965\pi\)
−0.470606 + 0.882343i \(0.655965\pi\)
\(332\) 0 0
\(333\) − 1926.00i − 0.316949i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 454.000i 0.0733856i 0.999327 + 0.0366928i \(0.0116823\pi\)
−0.999327 + 0.0366928i \(0.988318\pi\)
\(338\) 0 0
\(339\) 522.000 0.0836317
\(340\) 0 0
\(341\) 3264.00 0.518345
\(342\) 0 0
\(343\) − 2744.00i − 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5604.00i 0.866970i 0.901161 + 0.433485i \(0.142716\pi\)
−0.901161 + 0.433485i \(0.857284\pi\)
\(348\) 0 0
\(349\) 11266.0 1.72795 0.863976 0.503533i \(-0.167967\pi\)
0.863976 + 0.503533i \(0.167967\pi\)
\(350\) 0 0
\(351\) 1890.00 0.287410
\(352\) 0 0
\(353\) − 6426.00i − 0.968899i −0.874819 0.484450i \(-0.839020\pi\)
0.874819 0.484450i \(-0.160980\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 8568.00i − 1.27021i
\(358\) 0 0
\(359\) −6936.00 −1.01969 −0.509844 0.860267i \(-0.670297\pi\)
−0.509844 + 0.860267i \(0.670297\pi\)
\(360\) 0 0
\(361\) −6459.00 −0.941682
\(362\) 0 0
\(363\) 2265.00i 0.327498i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 388.000i 0.0551865i 0.999619 + 0.0275932i \(0.00878431\pi\)
−0.999619 + 0.0275932i \(0.991216\pi\)
\(368\) 0 0
\(369\) 1350.00 0.190456
\(370\) 0 0
\(371\) 11592.0 1.62217
\(372\) 0 0
\(373\) − 8062.00i − 1.11913i −0.828787 0.559564i \(-0.810969\pi\)
0.828787 0.559564i \(-0.189031\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21420.0i 2.92622i
\(378\) 0 0
\(379\) 3388.00 0.459182 0.229591 0.973287i \(-0.426261\pi\)
0.229591 + 0.973287i \(0.426261\pi\)
\(380\) 0 0
\(381\) 6204.00 0.834227
\(382\) 0 0
\(383\) 6984.00i 0.931764i 0.884847 + 0.465882i \(0.154263\pi\)
−0.884847 + 0.465882i \(0.845737\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2628.00i 0.345191i
\(388\) 0 0
\(389\) 2526.00 0.329237 0.164619 0.986357i \(-0.447361\pi\)
0.164619 + 0.986357i \(0.447361\pi\)
\(390\) 0 0
\(391\) −7344.00 −0.949877
\(392\) 0 0
\(393\) − 936.000i − 0.120140i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6146.00i − 0.776975i −0.921454 0.388487i \(-0.872998\pi\)
0.921454 0.388487i \(-0.127002\pi\)
\(398\) 0 0
\(399\) −1680.00 −0.210790
\(400\) 0 0
\(401\) 9786.00 1.21868 0.609339 0.792910i \(-0.291435\pi\)
0.609339 + 0.792910i \(0.291435\pi\)
\(402\) 0 0
\(403\) 9520.00i 1.17674i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 5136.00i − 0.625509i
\(408\) 0 0
\(409\) 886.000 0.107115 0.0535573 0.998565i \(-0.482944\pi\)
0.0535573 + 0.998565i \(0.482944\pi\)
\(410\) 0 0
\(411\) −7938.00 −0.952683
\(412\) 0 0
\(413\) 20832.0i 2.48202i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 3828.00i − 0.449539i
\(418\) 0 0
\(419\) 11352.0 1.32358 0.661792 0.749688i \(-0.269796\pi\)
0.661792 + 0.749688i \(0.269796\pi\)
\(420\) 0 0
\(421\) 10190.0 1.17964 0.589822 0.807533i \(-0.299198\pi\)
0.589822 + 0.807533i \(0.299198\pi\)
\(422\) 0 0
\(423\) − 648.000i − 0.0744843i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 11704.0i − 1.32645i
\(428\) 0 0
\(429\) 5040.00 0.567211
\(430\) 0 0
\(431\) 2448.00 0.273587 0.136794 0.990600i \(-0.456320\pi\)
0.136794 + 0.990600i \(0.456320\pi\)
\(432\) 0 0
\(433\) − 7078.00i − 0.785559i −0.919633 0.392779i \(-0.871514\pi\)
0.919633 0.392779i \(-0.128486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1440.00i 0.157631i
\(438\) 0 0
\(439\) 18088.0 1.96650 0.983250 0.182264i \(-0.0583426\pi\)
0.983250 + 0.182264i \(0.0583426\pi\)
\(440\) 0 0
\(441\) 3969.00 0.428571
\(442\) 0 0
\(443\) 3852.00i 0.413124i 0.978433 + 0.206562i \(0.0662276\pi\)
−0.978433 + 0.206562i \(0.933772\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 9594.00i − 1.01517i
\(448\) 0 0
\(449\) −6522.00 −0.685506 −0.342753 0.939426i \(-0.611359\pi\)
−0.342753 + 0.939426i \(0.611359\pi\)
\(450\) 0 0
\(451\) 3600.00 0.375870
\(452\) 0 0
\(453\) 2280.00i 0.236476i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2090.00i − 0.213930i −0.994263 0.106965i \(-0.965887\pi\)
0.994263 0.106965i \(-0.0341133\pi\)
\(458\) 0 0
\(459\) 2754.00 0.280056
\(460\) 0 0
\(461\) −9894.00 −0.999587 −0.499793 0.866145i \(-0.666591\pi\)
−0.499793 + 0.866145i \(0.666591\pi\)
\(462\) 0 0
\(463\) 3044.00i 0.305544i 0.988261 + 0.152772i \(0.0488199\pi\)
−0.988261 + 0.152772i \(0.951180\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 10236.0i − 1.01427i −0.861866 0.507137i \(-0.830704\pi\)
0.861866 0.507137i \(-0.169296\pi\)
\(468\) 0 0
\(469\) 5264.00 0.518271
\(470\) 0 0
\(471\) 498.000 0.0487190
\(472\) 0 0
\(473\) 7008.00i 0.681244i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3726.00i 0.357656i
\(478\) 0 0
\(479\) −11496.0 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 14980.0 1.42002
\(482\) 0 0
\(483\) − 6048.00i − 0.569759i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15316.0i 1.42512i 0.701610 + 0.712561i \(0.252465\pi\)
−0.701610 + 0.712561i \(0.747535\pi\)
\(488\) 0 0
\(489\) 9060.00 0.837847
\(490\) 0 0
\(491\) −11616.0 −1.06766 −0.533832 0.845591i \(-0.679248\pi\)
−0.533832 + 0.845591i \(0.679248\pi\)
\(492\) 0 0
\(493\) 31212.0i 2.85135i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13440.0i 1.21301i
\(498\) 0 0
\(499\) −14996.0 −1.34532 −0.672658 0.739953i \(-0.734848\pi\)
−0.672658 + 0.739953i \(0.734848\pi\)
\(500\) 0 0
\(501\) 2952.00 0.263245
\(502\) 0 0
\(503\) − 21648.0i − 1.91896i −0.281778 0.959480i \(-0.590924\pi\)
0.281778 0.959480i \(-0.409076\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8109.00i 0.710322i
\(508\) 0 0
\(509\) −3378.00 −0.294160 −0.147080 0.989125i \(-0.546987\pi\)
−0.147080 + 0.989125i \(0.546987\pi\)
\(510\) 0 0
\(511\) −12152.0 −1.05200
\(512\) 0 0
\(513\) − 540.000i − 0.0464748i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1728.00i − 0.146997i
\(518\) 0 0
\(519\) 5886.00 0.497816
\(520\) 0 0
\(521\) −16158.0 −1.35872 −0.679362 0.733804i \(-0.737743\pi\)
−0.679362 + 0.733804i \(0.737743\pi\)
\(522\) 0 0
\(523\) − 76.0000i − 0.00635420i −0.999995 0.00317710i \(-0.998989\pi\)
0.999995 0.00317710i \(-0.00101130\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13872.0i 1.14663i
\(528\) 0 0
\(529\) 6983.00 0.573929
\(530\) 0 0
\(531\) −6696.00 −0.547235
\(532\) 0 0
\(533\) 10500.0i 0.853294i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1728.00i 0.138862i
\(538\) 0 0
\(539\) 10584.0 0.845798
\(540\) 0 0
\(541\) 9278.00 0.737324 0.368662 0.929563i \(-0.379816\pi\)
0.368662 + 0.929563i \(0.379816\pi\)
\(542\) 0 0
\(543\) 3630.00i 0.286884i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 14564.0i − 1.13841i −0.822195 0.569206i \(-0.807251\pi\)
0.822195 0.569206i \(-0.192749\pi\)
\(548\) 0 0
\(549\) 3762.00 0.292456
\(550\) 0 0
\(551\) 6120.00 0.473177
\(552\) 0 0
\(553\) − 37856.0i − 2.91103i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 2154.00i − 0.163856i −0.996638 0.0819281i \(-0.973892\pi\)
0.996638 0.0819281i \(-0.0261078\pi\)
\(558\) 0 0
\(559\) −20440.0 −1.54655
\(560\) 0 0
\(561\) 7344.00 0.552699
\(562\) 0 0
\(563\) − 8700.00i − 0.651263i −0.945497 0.325632i \(-0.894423\pi\)
0.945497 0.325632i \(-0.105577\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2268.00i 0.167984i
\(568\) 0 0
\(569\) −4194.00 −0.309001 −0.154501 0.987993i \(-0.549377\pi\)
−0.154501 + 0.987993i \(0.549377\pi\)
\(570\) 0 0
\(571\) −8020.00 −0.587787 −0.293894 0.955838i \(-0.594951\pi\)
−0.293894 + 0.955838i \(0.594951\pi\)
\(572\) 0 0
\(573\) − 10152.0i − 0.740150i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2686.00i 0.193795i 0.995294 + 0.0968974i \(0.0308919\pi\)
−0.995294 + 0.0968974i \(0.969108\pi\)
\(578\) 0 0
\(579\) −6114.00 −0.438841
\(580\) 0 0
\(581\) 17136.0 1.22362
\(582\) 0 0
\(583\) 9936.00i 0.705844i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 3012.00i − 0.211786i −0.994378 0.105893i \(-0.966230\pi\)
0.994378 0.105893i \(-0.0337701\pi\)
\(588\) 0 0
\(589\) 2720.00 0.190281
\(590\) 0 0
\(591\) −12294.0 −0.855681
\(592\) 0 0
\(593\) − 15522.0i − 1.07489i −0.843298 0.537447i \(-0.819389\pi\)
0.843298 0.537447i \(-0.180611\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 6744.00i − 0.462334i
\(598\) 0 0
\(599\) −19224.0 −1.31130 −0.655652 0.755063i \(-0.727606\pi\)
−0.655652 + 0.755063i \(0.727606\pi\)
\(600\) 0 0
\(601\) −6502.00 −0.441301 −0.220651 0.975353i \(-0.570818\pi\)
−0.220651 + 0.975353i \(0.570818\pi\)
\(602\) 0 0
\(603\) 1692.00i 0.114268i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 29396.0i − 1.96565i −0.184552 0.982823i \(-0.559083\pi\)
0.184552 0.982823i \(-0.440917\pi\)
\(608\) 0 0
\(609\) −25704.0 −1.71031
\(610\) 0 0
\(611\) 5040.00 0.333710
\(612\) 0 0
\(613\) − 10006.0i − 0.659280i −0.944107 0.329640i \(-0.893073\pi\)
0.944107 0.329640i \(-0.106927\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 23118.0i − 1.50842i −0.656633 0.754210i \(-0.728020\pi\)
0.656633 0.754210i \(-0.271980\pi\)
\(618\) 0 0
\(619\) −14036.0 −0.911397 −0.455698 0.890134i \(-0.650610\pi\)
−0.455698 + 0.890134i \(0.650610\pi\)
\(620\) 0 0
\(621\) 1944.00 0.125620
\(622\) 0 0
\(623\) 840.000i 0.0540191i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1440.00i − 0.0917194i
\(628\) 0 0
\(629\) 21828.0 1.38369
\(630\) 0 0
\(631\) −4288.00 −0.270527 −0.135264 0.990810i \(-0.543188\pi\)
−0.135264 + 0.990810i \(0.543188\pi\)
\(632\) 0 0
\(633\) − 9780.00i − 0.614092i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 30870.0i 1.92012i
\(638\) 0 0
\(639\) −4320.00 −0.267444
\(640\) 0 0
\(641\) 1314.00 0.0809671 0.0404835 0.999180i \(-0.487110\pi\)
0.0404835 + 0.999180i \(0.487110\pi\)
\(642\) 0 0
\(643\) − 628.000i − 0.0385162i −0.999815 0.0192581i \(-0.993870\pi\)
0.999815 0.0192581i \(-0.00613042\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10944.0i 0.664997i 0.943104 + 0.332498i \(0.107892\pi\)
−0.943104 + 0.332498i \(0.892108\pi\)
\(648\) 0 0
\(649\) −17856.0 −1.07998
\(650\) 0 0
\(651\) −11424.0 −0.687776
\(652\) 0 0
\(653\) 1098.00i 0.0658010i 0.999459 + 0.0329005i \(0.0104744\pi\)
−0.999459 + 0.0329005i \(0.989526\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3906.00i − 0.231945i
\(658\) 0 0
\(659\) −312.000 −0.0184428 −0.00922139 0.999957i \(-0.502935\pi\)
−0.00922139 + 0.999957i \(0.502935\pi\)
\(660\) 0 0
\(661\) 8678.00 0.510643 0.255322 0.966856i \(-0.417819\pi\)
0.255322 + 0.966856i \(0.417819\pi\)
\(662\) 0 0
\(663\) 21420.0i 1.25473i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 22032.0i 1.27898i
\(668\) 0 0
\(669\) −8940.00 −0.516652
\(670\) 0 0
\(671\) 10032.0 0.577170
\(672\) 0 0
\(673\) − 14470.0i − 0.828793i −0.910097 0.414396i \(-0.863993\pi\)
0.910097 0.414396i \(-0.136007\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11838.0i 0.672040i 0.941855 + 0.336020i \(0.109081\pi\)
−0.941855 + 0.336020i \(0.890919\pi\)
\(678\) 0 0
\(679\) −8008.00 −0.452605
\(680\) 0 0
\(681\) 9540.00 0.536819
\(682\) 0 0
\(683\) − 25548.0i − 1.43128i −0.698467 0.715642i \(-0.746134\pi\)
0.698467 0.715642i \(-0.253866\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10122.0i 0.562123i
\(688\) 0 0
\(689\) −28980.0 −1.60239
\(690\) 0 0
\(691\) −18412.0 −1.01364 −0.506820 0.862052i \(-0.669179\pi\)
−0.506820 + 0.862052i \(0.669179\pi\)
\(692\) 0 0
\(693\) 6048.00i 0.331522i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15300.0i 0.831462i
\(698\) 0 0
\(699\) 5850.00 0.316548
\(700\) 0 0
\(701\) −8814.00 −0.474893 −0.237447 0.971401i \(-0.576310\pi\)
−0.237447 + 0.971401i \(0.576310\pi\)
\(702\) 0 0
\(703\) − 4280.00i − 0.229621i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 43176.0i − 2.29675i
\(708\) 0 0
\(709\) 17314.0 0.917124 0.458562 0.888662i \(-0.348365\pi\)
0.458562 + 0.888662i \(0.348365\pi\)
\(710\) 0 0
\(711\) 12168.0 0.641822
\(712\) 0 0
\(713\) 9792.00i 0.514324i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6696.00i 0.348768i
\(718\) 0 0
\(719\) 768.000 0.0398353 0.0199176 0.999802i \(-0.493660\pi\)
0.0199176 + 0.999802i \(0.493660\pi\)
\(720\) 0 0
\(721\) −32816.0 −1.69505
\(722\) 0 0
\(723\) 5466.00i 0.281166i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18196.0i 0.928270i 0.885764 + 0.464135i \(0.153635\pi\)
−0.885764 + 0.464135i \(0.846365\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −29784.0 −1.50698
\(732\) 0 0
\(733\) − 18142.0i − 0.914175i −0.889422 0.457087i \(-0.848893\pi\)
0.889422 0.457087i \(-0.151107\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4512.00i 0.225511i
\(738\) 0 0
\(739\) 13660.0 0.679961 0.339981 0.940432i \(-0.389580\pi\)
0.339981 + 0.940432i \(0.389580\pi\)
\(740\) 0 0
\(741\) 4200.00 0.208220
\(742\) 0 0
\(743\) − 12768.0i − 0.630434i −0.949020 0.315217i \(-0.897923\pi\)
0.949020 0.315217i \(-0.102077\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5508.00i 0.269782i
\(748\) 0 0
\(749\) 54768.0 2.67180
\(750\) 0 0
\(751\) 22952.0 1.11522 0.557610 0.830103i \(-0.311718\pi\)
0.557610 + 0.830103i \(0.311718\pi\)
\(752\) 0 0
\(753\) − 4464.00i − 0.216039i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 15818.0i − 0.759465i −0.925096 0.379732i \(-0.876016\pi\)
0.925096 0.379732i \(-0.123984\pi\)
\(758\) 0 0
\(759\) 5184.00 0.247915
\(760\) 0 0
\(761\) −18558.0 −0.884004 −0.442002 0.897014i \(-0.645732\pi\)
−0.442002 + 0.897014i \(0.645732\pi\)
\(762\) 0 0
\(763\) 52024.0i 2.46841i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 52080.0i − 2.45176i
\(768\) 0 0
\(769\) −14978.0 −0.702367 −0.351184 0.936307i \(-0.614221\pi\)
−0.351184 + 0.936307i \(0.614221\pi\)
\(770\) 0 0
\(771\) 8982.00 0.419557
\(772\) 0 0
\(773\) 8946.00i 0.416255i 0.978102 + 0.208128i \(0.0667369\pi\)
−0.978102 + 0.208128i \(0.933263\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 17976.0i 0.829968i
\(778\) 0 0
\(779\) 3000.00 0.137980
\(780\) 0 0
\(781\) −11520.0 −0.527808
\(782\) 0 0
\(783\) − 8262.00i − 0.377088i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18436.0i 0.835035i 0.908669 + 0.417517i \(0.137100\pi\)
−0.908669 + 0.417517i \(0.862900\pi\)
\(788\) 0 0
\(789\) −7416.00 −0.334622
\(790\) 0 0
\(791\) −4872.00 −0.218999
\(792\) 0 0
\(793\) 29260.0i 1.31028i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 16314.0i − 0.725058i −0.931972 0.362529i \(-0.881913\pi\)
0.931972 0.362529i \(-0.118087\pi\)
\(798\) 0 0
\(799\) 7344.00 0.325172
\(800\) 0 0
\(801\) −270.000 −0.0119101
\(802\) 0 0
\(803\) − 10416.0i − 0.457749i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 11862.0i 0.517425i
\(808\) 0 0
\(809\) 25446.0 1.10585 0.552926 0.833231i \(-0.313511\pi\)
0.552926 + 0.833231i \(0.313511\pi\)
\(810\) 0 0
\(811\) 42740.0 1.85056 0.925280 0.379284i \(-0.123830\pi\)
0.925280 + 0.379284i \(0.123830\pi\)
\(812\) 0 0
\(813\) 6528.00i 0.281608i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 5840.00i 0.250080i
\(818\) 0 0
\(819\) −17640.0 −0.752615
\(820\) 0 0
\(821\) 29946.0 1.27299 0.636494 0.771282i \(-0.280384\pi\)
0.636494 + 0.771282i \(0.280384\pi\)
\(822\) 0 0
\(823\) − 32596.0i − 1.38059i −0.723528 0.690295i \(-0.757481\pi\)
0.723528 0.690295i \(-0.242519\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3804.00i − 0.159949i −0.996797 0.0799746i \(-0.974516\pi\)
0.996797 0.0799746i \(-0.0254839\pi\)
\(828\) 0 0
\(829\) −3278.00 −0.137334 −0.0686669 0.997640i \(-0.521875\pi\)
−0.0686669 + 0.997640i \(0.521875\pi\)
\(830\) 0 0
\(831\) −3102.00 −0.129491
\(832\) 0 0
\(833\) 44982.0i 1.87099i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 3672.00i − 0.151640i
\(838\) 0 0
\(839\) 5784.00 0.238005 0.119002 0.992894i \(-0.462030\pi\)
0.119002 + 0.992894i \(0.462030\pi\)
\(840\) 0 0
\(841\) 69247.0 2.83927
\(842\) 0 0
\(843\) 19962.0i 0.815573i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 21140.0i − 0.857590i
\(848\) 0 0
\(849\) −5268.00 −0.212953
\(850\) 0 0
\(851\) 15408.0 0.620657
\(852\) 0 0
\(853\) 17306.0i 0.694661i 0.937743 + 0.347331i \(0.112912\pi\)
−0.937743 + 0.347331i \(0.887088\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 31134.0i − 1.24098i −0.784216 0.620488i \(-0.786934\pi\)
0.784216 0.620488i \(-0.213066\pi\)
\(858\) 0 0
\(859\) 10780.0 0.428183 0.214091 0.976814i \(-0.431321\pi\)
0.214091 + 0.976814i \(0.431321\pi\)
\(860\) 0 0
\(861\) −12600.0 −0.498730
\(862\) 0 0
\(863\) 3456.00i 0.136319i 0.997674 + 0.0681597i \(0.0217127\pi\)
−0.997674 + 0.0681597i \(0.978287\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16473.0i 0.645274i
\(868\) 0 0
\(869\) 32448.0 1.26665
\(870\) 0 0
\(871\) −13160.0 −0.511951
\(872\) 0 0
\(873\) − 2574.00i − 0.0997900i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 2618.00i − 0.100802i −0.998729 0.0504011i \(-0.983950\pi\)
0.998729 0.0504011i \(-0.0160500\pi\)
\(878\) 0 0
\(879\) 9702.00 0.372287
\(880\) 0 0
\(881\) −26550.0 −1.01531 −0.507657 0.861559i \(-0.669488\pi\)
−0.507657 + 0.861559i \(0.669488\pi\)
\(882\) 0 0
\(883\) 27596.0i 1.05173i 0.850567 + 0.525866i \(0.176259\pi\)
−0.850567 + 0.525866i \(0.823741\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37848.0i 1.43271i 0.697737 + 0.716354i \(0.254190\pi\)
−0.697737 + 0.716354i \(0.745810\pi\)
\(888\) 0 0
\(889\) −57904.0 −2.18452
\(890\) 0 0
\(891\) −1944.00 −0.0730937
\(892\) 0 0
\(893\) − 1440.00i − 0.0539617i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 15120.0i 0.562812i
\(898\) 0 0
\(899\) 41616.0 1.54391
\(900\) 0 0
\(901\) −42228.0 −1.56140
\(902\) 0 0
\(903\) − 24528.0i − 0.903921i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4804.00i 0.175870i 0.996126 + 0.0879351i \(0.0280268\pi\)
−0.996126 + 0.0879351i \(0.971973\pi\)
\(908\) 0 0
\(909\) 13878.0 0.506385
\(910\) 0 0
\(911\) 28608.0 1.04042 0.520211 0.854037i \(-0.325853\pi\)
0.520211 + 0.854037i \(0.325853\pi\)
\(912\) 0 0
\(913\) 14688.0i 0.532423i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8736.00i 0.314600i
\(918\) 0 0
\(919\) 40768.0 1.46334 0.731672 0.681657i \(-0.238741\pi\)
0.731672 + 0.681657i \(0.238741\pi\)
\(920\) 0 0
\(921\) −6108.00 −0.218529
\(922\) 0 0
\(923\) − 33600.0i − 1.19822i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 10548.0i − 0.373724i
\(928\) 0 0
\(929\) −27642.0 −0.976216 −0.488108 0.872783i \(-0.662313\pi\)
−0.488108 + 0.872783i \(0.662313\pi\)
\(930\) 0 0
\(931\) 8820.00 0.310487
\(932\) 0 0
\(933\) 288.000i 0.0101058i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 28106.0i − 0.979918i −0.871746 0.489959i \(-0.837012\pi\)
0.871746 0.489959i \(-0.162988\pi\)
\(938\) 0 0
\(939\) 3606.00 0.125322
\(940\) 0 0
\(941\) 14730.0 0.510291 0.255146 0.966903i \(-0.417877\pi\)
0.255146 + 0.966903i \(0.417877\pi\)
\(942\) 0 0
\(943\) 10800.0i 0.372955i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9564.00i 0.328182i 0.986445 + 0.164091i \(0.0524691\pi\)
−0.986445 + 0.164091i \(0.947531\pi\)
\(948\) 0 0
\(949\) 30380.0 1.03917
\(950\) 0 0
\(951\) 11394.0 0.388513
\(952\) 0 0
\(953\) − 53898.0i − 1.83203i −0.401141 0.916017i \(-0.631386\pi\)
0.401141 0.916017i \(-0.368614\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 22032.0i − 0.744194i
\(958\) 0 0
\(959\) 74088.0 2.49471
\(960\) 0 0
\(961\) −11295.0 −0.379141
\(962\) 0 0
\(963\) 17604.0i 0.589077i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 15140.0i − 0.503485i −0.967794 0.251742i \(-0.918996\pi\)
0.967794 0.251742i \(-0.0810035\pi\)
\(968\) 0 0
\(969\) 6120.00 0.202892
\(970\) 0 0
\(971\) 23808.0 0.786854 0.393427 0.919356i \(-0.371289\pi\)
0.393427 + 0.919356i \(0.371289\pi\)
\(972\) 0 0
\(973\) 35728.0i 1.17717i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 23094.0i − 0.756236i −0.925757 0.378118i \(-0.876571\pi\)
0.925757 0.378118i \(-0.123429\pi\)
\(978\) 0 0
\(979\) −720.000 −0.0235049
\(980\) 0 0
\(981\) −16722.0 −0.544233
\(982\) 0 0
\(983\) 7584.00i 0.246075i 0.992402 + 0.123038i \(0.0392636\pi\)
−0.992402 + 0.123038i \(0.960736\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6048.00i 0.195046i
\(988\) 0 0
\(989\) −21024.0 −0.675960
\(990\) 0 0
\(991\) −26752.0 −0.857523 −0.428761 0.903418i \(-0.641050\pi\)
−0.428761 + 0.903418i \(0.641050\pi\)
\(992\) 0 0
\(993\) 17004.0i 0.543409i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 7778.00i − 0.247073i −0.992340 0.123536i \(-0.960576\pi\)
0.992340 0.123536i \(-0.0394236\pi\)
\(998\) 0 0
\(999\) −5778.00 −0.182991
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.4.d.b.49.1 2
3.2 odd 2 900.4.d.h.649.2 2
4.3 odd 2 1200.4.f.n.49.2 2
5.2 odd 4 60.4.a.a.1.1 1
5.3 odd 4 300.4.a.i.1.1 1
5.4 even 2 inner 300.4.d.b.49.2 2
15.2 even 4 180.4.a.d.1.1 1
15.8 even 4 900.4.a.q.1.1 1
15.14 odd 2 900.4.d.h.649.1 2
20.3 even 4 1200.4.a.a.1.1 1
20.7 even 4 240.4.a.i.1.1 1
20.19 odd 2 1200.4.f.n.49.1 2
40.27 even 4 960.4.a.r.1.1 1
40.37 odd 4 960.4.a.bc.1.1 1
45.2 even 12 1620.4.i.f.1081.1 2
45.7 odd 12 1620.4.i.l.1081.1 2
45.22 odd 12 1620.4.i.l.541.1 2
45.32 even 12 1620.4.i.f.541.1 2
60.47 odd 4 720.4.a.bb.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.4.a.a.1.1 1 5.2 odd 4
180.4.a.d.1.1 1 15.2 even 4
240.4.a.i.1.1 1 20.7 even 4
300.4.a.i.1.1 1 5.3 odd 4
300.4.d.b.49.1 2 1.1 even 1 trivial
300.4.d.b.49.2 2 5.4 even 2 inner
720.4.a.bb.1.1 1 60.47 odd 4
900.4.a.q.1.1 1 15.8 even 4
900.4.d.h.649.1 2 15.14 odd 2
900.4.d.h.649.2 2 3.2 odd 2
960.4.a.r.1.1 1 40.27 even 4
960.4.a.bc.1.1 1 40.37 odd 4
1200.4.a.a.1.1 1 20.3 even 4
1200.4.f.n.49.1 2 20.19 odd 2
1200.4.f.n.49.2 2 4.3 odd 2
1620.4.i.f.541.1 2 45.32 even 12
1620.4.i.f.1081.1 2 45.2 even 12
1620.4.i.l.541.1 2 45.22 odd 12
1620.4.i.l.1081.1 2 45.7 odd 12