Defining parameters
Level: | \( N \) | \(=\) | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 300.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(300, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 198 | 10 | 188 |
Cusp forms | 162 | 10 | 152 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(300, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
300.4.d.a | $2$ | $17.701$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3 i q^{3}+7 i q^{7}-9 q^{9}-54 q^{11}+\cdots\) |
300.4.d.b | $2$ | $17.701$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3 i q^{3}+28 i q^{7}-9 q^{9}-24 q^{11}+\cdots\) |
300.4.d.c | $2$ | $17.701$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3 i q^{3}+13 i q^{7}-9 q^{9}+6 q^{11}+\cdots\) |
300.4.d.d | $2$ | $17.701$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3 i q^{3}+32 i q^{7}-9 q^{9}+36 q^{11}+\cdots\) |
300.4.d.e | $2$ | $17.701$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3 i q^{3}+8 i q^{7}-9 q^{9}+36 q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(300, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(300, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)