Properties

Label 300.4.d
Level $300$
Weight $4$
Character orbit 300.d
Rep. character $\chi_{300}(49,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $5$
Sturm bound $240$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 300.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(240\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(300, [\chi])\).

Total New Old
Modular forms 198 10 188
Cusp forms 162 10 152
Eisenstein series 36 0 36

Trace form

\( 10 q - 90 q^{9} + O(q^{10}) \) \( 10 q - 90 q^{9} - 200 q^{19} + 60 q^{21} - 180 q^{29} - 280 q^{31} - 60 q^{39} - 900 q^{41} - 750 q^{49} + 540 q^{51} + 920 q^{61} - 1080 q^{69} - 2880 q^{71} - 800 q^{79} + 810 q^{81} + 1620 q^{89} + 3760 q^{91} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
300.4.d.a 300.d 5.b $2$ $17.701$ \(\Q(\sqrt{-1}) \) None 300.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+7 i q^{7}-9 q^{9}-54 q^{11}+\cdots\)
300.4.d.b 300.d 5.b $2$ $17.701$ \(\Q(\sqrt{-1}) \) None 60.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+28 i q^{7}-9 q^{9}-24 q^{11}+\cdots\)
300.4.d.c 300.d 5.b $2$ $17.701$ \(\Q(\sqrt{-1}) \) None 300.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+13 i q^{7}-9 q^{9}+6 q^{11}+\cdots\)
300.4.d.d 300.d 5.b $2$ $17.701$ \(\Q(\sqrt{-1}) \) None 60.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+32 i q^{7}-9 q^{9}+36 q^{11}+\cdots\)
300.4.d.e 300.d 5.b $2$ $17.701$ \(\Q(\sqrt{-1}) \) None 12.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+8 i q^{7}-9 q^{9}+36 q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(300, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(300, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)