Defining parameters
Level: | \( N \) | = | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(19200\) | ||
Trace bound: | \(6\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(300))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7480 | 2947 | 4533 |
Cusp forms | 6920 | 2863 | 4057 |
Eisenstein series | 560 | 84 | 476 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(300))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
300.4.a | \(\chi_{300}(1, \cdot)\) | 300.4.a.a | 1 | 1 |
300.4.a.b | 1 | |||
300.4.a.c | 1 | |||
300.4.a.d | 1 | |||
300.4.a.e | 1 | |||
300.4.a.f | 1 | |||
300.4.a.g | 1 | |||
300.4.a.h | 1 | |||
300.4.a.i | 1 | |||
300.4.d | \(\chi_{300}(49, \cdot)\) | 300.4.d.a | 2 | 1 |
300.4.d.b | 2 | |||
300.4.d.c | 2 | |||
300.4.d.d | 2 | |||
300.4.d.e | 2 | |||
300.4.e | \(\chi_{300}(251, \cdot)\) | n/a | 108 | 1 |
300.4.h | \(\chi_{300}(299, \cdot)\) | n/a | 104 | 1 |
300.4.i | \(\chi_{300}(257, \cdot)\) | 300.4.i.a | 4 | 2 |
300.4.i.b | 4 | |||
300.4.i.c | 4 | |||
300.4.i.d | 8 | |||
300.4.i.e | 8 | |||
300.4.i.f | 8 | |||
300.4.j | \(\chi_{300}(7, \cdot)\) | n/a | 108 | 2 |
300.4.m | \(\chi_{300}(61, \cdot)\) | 300.4.m.a | 32 | 4 |
300.4.m.b | 32 | |||
300.4.n | \(\chi_{300}(11, \cdot)\) | n/a | 704 | 4 |
300.4.o | \(\chi_{300}(109, \cdot)\) | 300.4.o.a | 56 | 4 |
300.4.r | \(\chi_{300}(59, \cdot)\) | n/a | 704 | 4 |
300.4.w | \(\chi_{300}(67, \cdot)\) | n/a | 720 | 8 |
300.4.x | \(\chi_{300}(17, \cdot)\) | n/a | 240 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(300))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(300)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 1}\)